Contact
Allmandring 19
70569 Stuttgart
Deutschland
Room: 00.010
2025
- T. Krake, D. Klötzl, D. Hägele, and D. Weiskopf, “Uncertainty-Aware Seasonal-Trend Decomposition Based on Loess,” IEEE Transactions on Visualization and Computer Graphics, Feb. 2025, doi: 10.1109/TVCG.2024.3364388.
2024
- D. Hägele, Y. Tang, and D. Weiskopf, “Visual Compositional Data Analytics for Spatial Transcriptomics,” IEEE VIS Workshop on Bio+Med+Vis. arXiv, 2024. doi: 10.48550/ARXIV.2409.07306.
- D. Saupe, K. Rusek, D. Hägele, D. Weiskopf, and L. Janowski, “Maximum Entropy and Quantized Metric Models for Absolute Category Ratings,” IEEE Signal Processing Letters, 2024, doi: 10.1109/LSP.2024.3480832.
- L. Reichmann, D. Hägele, and D. Weiskopf, “Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions,” in 2024 IEEE 14th Symposium on Large Data Analysis and Visualization (LDAV), 2024, pp. 43–53. doi: 10.1109/LDAV64567.2024.00008.
- M. Evers, D. Hägele, S. Döring, and D. Weiskopf, “Progressive Glimmer: Expanding Dimensionality in Multidimensional Scaling,” IEEE VIS Workshop on Progressive Data Analysis and Visualization. arXiv, 2024. doi: 10.48550/ARXIV.2410.19430.
- P. Paetzold, D. Hägele, M. Evers, D. Weiskopf, and O. Deussen, “UADAPy: An Uncertainty-Aware Visualization and Analysis Toolbox,” IEEE VIS Workshop on Uncertainty Visualization: Applications, Techniques, Software, and Decision Frameworks. arXiv, 2024. doi: 10.48550/ARXIV.2409.10217.
2022
- D. Hägele, T. Krake, and D. Weiskopf, “Uncertainty-Aware Multidimensional Scaling,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–10, 2022, doi: 10.1109/tvcg.2022.3209420.
- D. Hägele et al., “Uncertainty visualization : Fundamentals and recent developments,” Information technology, vol. 64, Art. no. 4–5, 2022, doi: 10.1515/itit-2022-0033.
2021
- D. Hägele, M. A. E. Abdelaal, S. Ö. Ögüz, M. Toussaint, and D. Weiskopf, “Visual analytics for nonlinear programming in robot motion planning,” Journal of visualization, vol. 25, Art. no. 1, 2021, doi: 10.1007/s12650-021-00786-8.
2020
- D. Hägele, M. Abdelaal, O. S. Oguz, M. Toussaint, and D. Weiskopf, “Visualization of nonlinear programming for robot motion planning,” in Proceedings of the 13th International Symposium on Visual Information Communication and Interaction, ACM, Dec. 2020. doi: 10.1145/3430036.3430050.
Lectures/Courses
- Information Visualization
- Practical Course Information Visualization
- Programmierung für Medieninformatik (Practical Course)
- Datenstrukturen und Algorithmen
Projects/Thesis
- Dimensionality Reduction for Uncertain Data via Out-of-sample Extensions (Bachelor Thesis)
- Visual Exploration for Deep Learning Models and Trainings for Microstructure Data (Master Thesis)
- Reproducing, Extending and Updating Dimensionality Reductions (Master Thesis)
- A Curated Collection of Multivariate Timeseries for Visualization Benchmarks (Bachelor Forschungsprojekt)