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Figure 1: Geospatial entities (here square regions of Australia with side length 1km) are projected to discrete 1D positions while attempting
to conserve local neighborhoods. The resulting ordering of entities is used to generate a spatio-temporal matrix visualization (bottom), where
the rows are points in time, and the columns are geospatial entities. The sequence shows a swath of wildfire spreading outwards as a ring
over the course of two weeks (top, left to right), and the resulting pattern in the projection (bottom, time increases downwards).

Abstract
It is crucial to visually extrapolate the characteristics of their evolution to understand critical spatio-temporal events such as
earthquakes, fires, or the spreading of a disease. Animations embedded in the spatial context can be helpful for understanding
details, but have proven to be less effective for overview and comparison tasks. We present an interactive approach for the
exploration of spatio-temporal data, based on a set of neighborhood-preserving 1D projections which help identify patterns
and support the comparison of numerous time steps and multivariate data. An important objective of the proposed approach
is the visual description of local neighborhoods in the 1D projection to reveal patterns of similarity and propagation. As this
locality cannot generally be guaranteed, we provide a selection of different projection techniques, as well as a hierarchical
approach, to support the analysis of different data characteristics. In addition, we offer an interactive exploration technique
to reorganize and improve the mapping locally to users’ foci of interest. We demonstrate the usefulness of our approach with
different real-world application scenarios and discuss the feedback we received from domain and visualization experts.

CCS Concepts
• Human-centered computing → Visual analytics; Geographic visualization; Information visualization; Visualization systems
and tools;

1. Introduction

For the analysis of spatio-temporal effects, such as patterns of
propagation or localized similarities of temporal characteristics,
both the spatial and the temporal context are essential to answer
questions like: Where and when did something happen? How will
spatio-temporal phenomena spread/propagate? How did an event
influence areas over time? Are there temporal coherences between
events at different locations? Answering such questions plays an

important role in many applications when analyzing, for exam-
ple, the evolution of disastrous events, or for social media analy-
sis. As such, time-to-time mapping visualizations (i.e., animation)
are problematic because viewers must remember previous states of
the visualization to retain the temporal context, and are subject to
change blindness [HE11; TMB02]. Another possibility is the in-
troduction of complex glyphs which visualize the temporal pro-
gression for one location. Such approaches, however, have limited
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scalability both in the level of detail shown in the glyphs and the
number of locations that can be shown [BKC*13], although ag-
gregation can help in the latter case. To this point, many existing
techniques focus more on either the temporal or the spatial aspects
of spatio-temporal data, or are limited in their applicability for long
time spans and large spatial context.

Recent approaches [BJC*18; WFG*18; BSC*20; ZJW21] have
explored the possibility of projecting spatial data into a one-
dimensional space using their position on a space-filling curve. As
a result, locations which are close in 2D or 3D space are also de-
picted close to each other in 1D representations. Using this ordering
as one axis, a temporal progression can be shown for each location
on a second axis, which can reveal regional temporal patterns and
propagation patterns. We extend this concept in multiple ways to
create a visual analytics approach that supports the top-down and
bottom-up analysis of spatio-temporal phenomena. We offer differ-
ent projection methods from the 2D space to the 1D ordering and
support analysts in comparing the results visually and with respec-
tive metrics to select the most sensible option for a specific dataset
interactively; for instance, a more structured projection such as a
Hilbert or Morton curve can be appropriate for spatially dense data
that was collected at fixed positions along a grid, such as satel-
lite measurements. Heterogeneously distributed data—for exam-
ple, data attributed to separate cities—might reveal more patterns
if ordered along a distance-based clustering. We further extend the
approach by hierarchical aggregation and ordering, such that sub-
trees in themselves are continuously arranged in the 1D ordering.
This extension pairs well with the interactive selection of projec-
tion methods, where different methods can be used on different ag-
gregation levels. Overall, we provide a comprehensive approach to
explore and interpret spatial and temporal aspects in geo-located
data with coordinated views.

Our contributions in this work are the following: We present a
new approach to explore geospatial data in space and time with
neighborhood-preserving 1D timelines linked with a traditional
map view. The visualization helps compare different 1D projec-
tions to detect and verify visual patterns in the data. With this setup,
we support top-down and bottom-up analysis in versatile applica-
tion scenarios on different scales. We demonstrate this for two real-
world scenarios. We discuss the shortcomings and strengths of our
approach based on domain expert feedback and generated test dis-
tribution patterns. We further consider additional scenarios where
the presented approach could be applied.

2. Related Work

Spatio-temporal analysis, especially in the context of geographical
data, is a rich research field. It comprises the analysis of trajec-
tories from moving entities, but also the analysis of changes in a
static spatial context [DWL08]. Andrienko et al. [AAB*11; AA13]
provide an overview of visual analytics of movement, which in-
cludes the analysis of dynamic changes in a spatial context. Li et
al. [LCZ*18] discuss tasks for the analysis of spatio-temporal co-
occurrence. In this work, we visualize dynamic changes such as
the geographical propagation of phenomena, which is crucial, for
example, for the analysis of natural disasters, geopolitical devel-
opments, and social media trends. In such cases, different patterns

can be identified, for example, for the characteristics of pandemic
outbreaks. These characteristics include synchrony, wave patterns,
and spatial hierarchies [VBS*06]. Furthermore, we apply a spatial
ordering to display temporal changes while preserving spatial prox-
imity. Hence, related work focuses on visualization approaches for
comparable analysis scenarios.

Spatio-temporal Visualization. The visualization of temporal
changes inside a spatial context has been approached with differ-
ent techniques to support diverse analysis goals. Peña-Araya et al.
conducted a user study to compare animations, small multiples,
and glyphs for the depiction of correlations [PBBH19] and tem-
poral changes [PBP20] on maps. The authors tested for tasks about
propagation distance, direction, speed, and duration of a fictional
disease. While small multiples and glyphs generally outperformed
animation, animation was rated best in terms of subjective task con-
fidence and for the estimation of directions. Similarly, Boyandin et
al. [BBL12] and Griffin et al. [GMH*06] compared animations and
small multiples in this context. Animation is problematic for tasks
such as comparison [TMB02], but allows to interpret short-term ef-
fects in the spatial context without using abstract mappings. We see
the results of Peña-Araya et al. as an indicator for the importance of
our linked-view approach where analysts can also investigate ani-
mations in detail (e.g., animated geo-temporal clusters [CRO14]).
Phoenixmap [ZLG*19] proposes an alternative to animation by su-
perimposing aggregated density snapshots on a map.

Visualizations that consider spatio-temporal phenomena, such as
propagation effects in geographical data, can be found in numer-
ous publications. Wang et al. [WLY*13] presented a visualization
of trajectory data from road segments plotted over time that is vi-
sually similar to our projected timelines. Chen et al. [CAA*19]
also applied this type of visualization to analyze movement events
such as harsh breaking. Liang et al. [LAC*16] and Maciejewski
et al. [MLR*11] visualized the spread of diseases with small multi-
ples and line graphs. Deng et al. [DWC*19] developed an approach
for the analysis of air pollution propagation based on small multi-
ples. MapTrix [YDGM16] combines geographical maps with a ma-
trix visualization. The corona-data.ch [Pro20] dashboard also
combines a map with a space-time matrix visualization, but uses
case count instead of spatial relations for the ordering of geospatial
entities in the matrix. Boyandin et al. [BBBL11] presented Flow-
strates, a matrix-based visualization that depicts flow values over
time between origin and destination locations. As we will discuss
in Section 3.4, those techniques have different strengths that we
adapted and combined in our visual analytics approach.

Other publications place a special focus on multivariate data
analysis: Guo et al. [GCML06] and Andrienko et al. [AAB*10] vi-
sualized multivariate spatio-temporal patterns using self-organizing
maps. Turkay et al. [TSH*14] displayed small multiples of multi-
variate geographical data as attribute signatures for comparisons in
a matrix. Kim et al. [KMM*13] introduced Bristle maps for mul-
tivariate geo-visualization. Livingston et al. [LD11] discuss mul-
tivariate texture evaluation. Tominski et al. [TSAA12] used 3D
stacking for multivariate trajectory data. Liu et al. [LXR18] provide
multiple linked views for the analysis of spatio-temporal data, with
an overview for data partitioning and glyph-based representations
on the map. We apply similar concepts, but focus on a bidirectional
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Figure 2: The data is hierarchically aggregated based on its geospatial property; for example, by clustering, or grouping by geopolitical
entities. Each subtree is re-ordered based on a projection method. A subtree—initially, the hierarchy root’s children—is visualized in the
projected timeline. Finally, on selection of an element in the projected timeline, its geospatial neighborhood is visualized in the detail
timeline. Projection is performed independently for all subtrees, shown exemplary with a Morton projection on the right.

approach that provides an overview of temporal sequences, as well
as their spatial distribution.

Spatial Ordering. Spatial context is typically either two- or three-
dimensional. To display temporal changes on one axis of the vi-
sualization, the spatial context has to be reduced into one dimen-
sion. Popular approaches to achieve such a dimension reduction
are space-filling curves [But71] or orders derived from hierarchi-
cal clustering [GG06]. Buchmüller et al. [BJC*18] applied space-
filling curves to create a dense representation of spatio-temporal
movement of multiple objects. In contrast, we focus on the tem-
poral changes in spatial regions, and extend their static overview
of the data with interactive means for exploring data instances in
detail to support more flexible, in-depth analyses of visual pat-
terns in their spatial context. Space-filling curves have also been
applied for the exploration of volume data [WFG*18; ZJW21] on
grid-based data layouts. Other approaches include creating lay-
outs for large graphs [MM08] and jigsaw maps [Wat05]. Multivari-
ate data can also be represented with similar techniques. Wong et
al. [WFM*11] used a space-filling approach for multivariate graph
data and displayed multiple parameters by small multiples. Huang
et al. [HHN*17] created multiple stripes for multivariate data visu-
alization. Pavlopoulos et al. [PKS*13] applied space-filling curves
to explore the structural variation of genome data. We combine
multiple spatial ordering strategies with a hierarchical overview
and a linked map view. This way, we can combine the advantages
of popular dashboard visualizations (e.g., the COVID-19 dashboard
from ESRI [ESR20]) and visualizations that reveal spatio-temporal
patterns. The advantage of our approach is that bi-directional anal-
ysis from a spatial and a temporal perspective can be performed as
needed in one coherent visual analytics approach.

With respect to the quality of spatial orderings, multiple as-
pects can be considered, such as spatial and temporal coher-
ence [WBM*19]. Dafner et al. [DCM00] introduced context-based
space-filling curves which are sensitive to coherent regions in im-
ages. Zhou et al. [ZJW21] extend this concept by traversing on
a Hamiltonian path based on a space-filling curve. Ngo and Lin-
sen [NL20] combine dimensionality reduction to 2D with interac-
tive 2D to 1D mapping. Guo et al. [GPG02; GG06; Guo07] sug-
gested that complete-linkage hierarchical clustering to derive spa-
tial orderings from geographical data provided better results than
space-filling curves. We argue that depending on the task, the anal-

ysis might require different views on the data, making it difficult
to determine one optimal spatial order. Hence, we included a dy-
namic reordering with established space-filling curves, as well as
orderings based on hierarchical clustering. This approach is flexible
to be extended with future techniques, for example, to emphasize
temporal coherence.

3. Approach

The main purpose of our approach is the analysis of spatio-
temporal phenomena in a geographical context. Hence, we first de-
fine relevant analysis tasks in this context and outline our design
rationale before we present the implemented framework.

3.1. Analysis Tasks

We orient ourselves on the task taxonomy presented by Andrienko
et al. [AAB*11]. While their work focuses on movement, the au-
thors emphasize that the objects in motion can be very abstract and
do not need to correspond to physical objects. As our data is time-
series data for non-moving geospatial entities, we see these enti-
ties as spatial objects, as defined by Andrienko et al. Within these
spatial objects, we further see contiguous sub-sequences of a time
series as temporal objects. Furthermore, we base our definition of
movement patterns on the taxonomy by Dodge et al. [DWL08].

T1 Hotspots: Identification and exploration of hotspots, that is, sim-
ilar temporal patterns in a close geospatial context. This corre-
sponds to full or lagged co-incidence in space and time of a tem-
poral object in the taxonomy of Dodge et al.

T2 Synchronization: Identification and exploration of patterns of
synchronization, either full or lagged. This would correspond to
temporal patterns that reoccur or co-occur [LCZ*18] outside of
a geospatial context; for instance, a synchronous spike in some
measurement in multiple distant locations.

T3 Trendsetters: Identification and exploration of trendsetters for
lagged variants of T1 and T2; that is, spatial objects within a co-
incidence or synchronization that are the very first, or the first
within the temporal context, to exhibit the relevant progression.

T4 Details: In-depth analysis of a spatio-temporal region of interest
with fine control over the temporal progression; for example, via
step-wise animation of the temporal data.
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Figure 3: The visualization consists of two main components: the map and the temporal view. The map has a time control panel (a) for
adjusting the currently displayed point in time and for animation control. The timeline shows a minimap of the hierarchy, the projected
timeline with a bar of pairwise distance indicators (b), and the detail timeline. The subtree of the hierarchy visualized in the projected timeline
is indicated in the hierarchy minimap by a rectangle (c). Clicking on an element in the projected timeline selects it as the nexus (d), which is
visualized together with a neighborhood in the detail timeline. Here, we see data from the COVID-19 application scenario (Section 5.1).

T5 Relations: Crosswise relation between spatial and temporal ob-
jects; for instance, identifying spatially close data, or relating the
spatial context of one datum to its temporal progression.

We define generic tasks as the application scenarios and types of
data that can be analyzed with our approach are very diverse. How-
ever, succinct formulations can be found for these tasks when ap-
plied to a specific scenario and dataset; for instance, for a dataset of
confirmed cases of infection in different cities over time, T3 could
be formulated as: “Identification and exploration of regional and
global infection sources.” We will further discuss these tasks in the
application scenarios (Section 5). T4 and T5 are general tasks that
are typically found with interactive visual analysis approaches.

3.2. Dimensionality Reduction

Our visual analytics approach is based on spatio-temporal data
which is processed in multiple stages before visualization. Figure 2
shows the data processing pipeline. Initially, we hierarchize the
data based on its spatial properties, for instance by applying spatial
clustering. The hierarchization step can be skipped if the structure
is already given, as it would be the case with geopolitical entities
(counties, countries, continents). A hierarchical processing of the
data is essential to provide scalability for spatial content, but is not
strictly necessary for data with few geospatial entities. The hierar-
chization takes place in the geospatial domain. Our approach then
orders each subtree into a 1D sequence based on one from a set of
projection methods. The subtrees are projected independently, as
shown in Figure 2, and the hierarchization is not time-dependent.

In our prototype, we offer two types of space-filling curves—
Hilbert and Morton—as a basis for the projection. A space-filling
curve is constructed in the geospatial domain such that each loca-
tion or entity is mapped to a unique discrete location on the curve.
Space-filling curves can be constructed on uniform regular grids.
For our purposes, even adaptive regular grids can be used, and we
utilize this fact to construct the curves based on the leaf nodes of a
quadtree, where each leaf node contains at most one entity.

Besides the space-filling curves, we offer projections based on
the traversal of binary trees. These binary trees are the result of ag-
glomerative hierarchical clustering (AHC) [Sib73]. AHC can use
different linkage criteria; such as single, average, complete, me-
dian, centroid, or Ward [War63] linkage; and our prototype of-
fers those variants where applicable. We use Great Circle dis-
tance between two geospatial locations as distance function. For
the COVID-19 application scenario (Section 5.1), we also utilize a
dataset of air traffic volume as an inverse distance metric between
two countries [HWG*13]. We also consider dynamic time warp-
ing (DTW) [SC78] as distance metric between the time series data
of two entities, using the tslearn [TFV*20] toolkit, as well as a
first-peak projection which orders entities based on the first point
in time their time series exceed a threshold.

3.3. Visualization Framework

We visualize this processed data in multiple coordinated views: a
map view, a temporal view with spatial cues, and a control panel.
In the following, we explain the different parts of our web-based
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prototype (Figure 3), which we built using JavaScript, Leaflet, and
D3.js [BOH11]. We have made the prototype available in the sup-
plemental material and published the source code [FMKK21].

Map View. The map visualizes the geospatial aspect of the data.
All data from the same hierarchy level as the currently visualized
subtree are shown. A legend in the bottom left shows two ver-
sions for the symbols: the regular version, and the version that in-
dicates a selection. We do this because the combination of a color
scale and a selection highlight that utilizes saturation lead to con-
fusion with darker colors. The top right of the map also contains a
time/animation control panel (Figure 3a), which mainly allows to
configure the point in time used for the map markers; for instance,
a day of a dataset on day-by-day temporal granularity can be se-
lected, and the map markers then encode the data of that day. The
time/animation control panel also has buttons for stepping through
time steps (T4), and for starting and stopping animation. Animation
shows each time step for a configurable duration.

Temporal View. The temporal view consists of the hierarchy mini-
map and projected and detail timelines. The hierarchy minimap
shows an icicle plot [KL83] of the data hierarchy, which can be
zoomed to only show the current subtree. A rectangle (Figure 3c)
indicates the currently visualized subtree of the dataset. To increase
visibility of the indicator, only the vertically central band of the ici-
cle plot’s cells encodes value by color. The cell’s backgrounds are
filled white and light gray in alternation to emphasize the hierar-
chical structure. Navigation through the hierarchy is realized by
scrolling through the projected timeline. It visualizes the elements
of the current subtree and their time series data as a matrix. In the
horizontal direction, the order of elements depends on the applied
projection method. The vertical direction displays the temporal ex-
tent of the dataset, where time increases downward. Adjacency in
the projected timeline does not necessarily imply geospatial close-
ness of the respective data. To indicate geospatial distance of neigh-
boring elements in the projected timeline, the distance bar (Fig-
ure 3b) maps pairwise great-circle distance to a gray-scale value,
where darker cells indicate larger distances. In addition, the detail
timeline shows a selected set of elements with a higher level of
detail (T4). These elements are generally larger, which allows for
more flexibility in how to visualize the temporal data; for instance,
in the COVID-19 scenario (Section 5), we visualize the temporal
data using vertical line charts. This concept is generally extend-
able in the future by techniques such as stacked bar charts, stacked
graphs, Gantt charts, or others, depending on the type of data.

Control Panel A control panel provides different projection
method options. Selecting a different method re-orders the data hi-
erarchically, in-place. The quality metrics for the current subtree
are listed for each projection, and the projections can be sorted by
any of them. The control panel also contains sliders for setting the
selection cutoff radius individually for each level of the hierarchy.

Interactive Exploration. Data is linked throughout the views by
using another frame color (T5). Selecting an element in the map or
the projected timeline sets that element as the nexus (Figure 3d).
The detail timeline visualizes the nexus, as well as all elements
from the same hierarchy level within a configurable cutoff radius.

The circle around the current selection depicts the radius. In the
detail timeline, elements are sorted based on their geospatial dis-
tance to the nexus, but grouped by whether they appear before or
after the nexus in the projected timeline; that is, elements left of the
nexus are sorted in descending order, elements on the right in as-
cending order. This reduces edge crossings in the links between the
two timelines while indicating geospatial closeness. Users can fur-
ther select horizontal and vertical ranges, where the vertical range
restricts the temporal extent of the detail timeline.

3.4. Design Rationale

The aforementioned tasks (Section 3.1) are important for spatio-
temporal data in a geographical context. For such data, numerous
solutions have been proposed [AMST11]. After reviewing existing
methods, we identified animations, small multiples, glyphs, space-
time cubes, and timelines as potential candidates to depict the data.
We chose timelines for representing spatial context in a 1D or-
dering because of their good representation of temporal proper-
ties and their scalability. In particular, we aimed at producing clear
spatio-temporal patterns by using timelines in combination with
a neighborhood-preserving 1D projection, which we were able to
confirm with test data (Figure 5) as well as real datasets (Figure 6).
For the map, we selected glyphs for their representation of spatial
properties, as well as animation on demand. This way, we follow
the information seeking mantra [Shn96] by providing an overview
with the timelines, details in the map glyphs, and a drill-down to
the animated changes at locations.

We include a map view that displays animations of the data
changes and uses glyphs to depict multivariate aspects. Different
timeline visualizations can be displayed compactly—down to a
single pixel per value—without aggregation [Kei00], providing a
good scalability over time. For the timelines, we provide a com-
pact overview with a hierarchical navigation structure and spatially
ordered 1D projections. Our approach supports bottom-up analy-
sis, for example, by selecting a specific region on the map and in-
vestigating temporal changes in this region and its neighborhood.
Top-down analysis is supported by the timelines; for example, an
analyst can investigate temporal developments in an overview and
select regions and time frames which are then shown in detail and
linked on the map supported by animation.

To represent the 2D spatial data in a discrete 1D order, we apply
different techniques for this dimensionality reduction. It is essential
to provide the analyst with visual support about how the results of
dimensionality reduction techniques differ. Patterns might not be
visible with all techniques, so guidance for comparing and selecting
the best projection for the current task is necessary.

3.5. Visual Support for Comparing 1D Projections

Visual patterns that help solving the tasks (Section 3.1) are not al-
ways consistent between different projection methods. Hence, the
visualization has to support the analysis by providing comparabil-
ity between projections. This way, users can identify if a pattern
is constant between projections and if another projection would be
better for the current area under investigation.
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(a) Tooltip comparing a projection to the current one.

(b) Tooltip comparing all projections for the current selection.

Figure 4: When hovering over a projection in the control panel,
differences between the current and the hovered projection are
(a) shown by applying a consistent color scheme to entities. When
hovering over the selection in the timeline overview or map view,
the selection is (b) visualized in all projections as a parallel coor-
dinate plot. The current projection is red, the nexus blue.

To compare two projections on a global scale, we provide a
tooltip which is visible when hovering over a projection in the con-
trol panel. This tooltip visualizes all entities of the currently vi-
sualized subtree as rectangles, which are ordered by the current
projection order and colored using a continuous color scheme. Be-
low that, the entities are shown again, in the order of the hovered
projection, but with the same color mapping. In the example in Fig-
ure 4a, blocks that stay contiguous in the hovered projection show
up clearly as blocks of similar color. We also add a path connecting
all entities in the order of the hovered projection to the map, which
can be used to understand the geospatial layout of the projection.

We create a second popup when hovering over a selection, either
in the projected timeline or in the map. This popup visualizes the
selection in the form of a vertical parallel coordinate plot. Each
row corresponds to one projection, the data cases are the selected
entities, and the horizontal position within each row is the index of
the entity in the order of that projection. The selection’s entities are
colored red for the current projection, and the nexus is highlighted
in blue in all projections. The popup provides a way to compare
the effect of different projections on a selection; for instance, in the
example shown in Figure 4b, we see that the selected geospatial
neighborhood is not contiguous in the current Hilbert projection
(red), but mostly contiguous in some AHC-based ones.

3.6. Quantitative Support for Comparing 1D Projections

We also provide quantitative support for the quality of the dif-
ferent projections. We use two different types of quality metrics:
two neighborhood preservation measures defined by Venna and
Kaski [VK01] in the context of self-organizing map dimension-
ality reduction; and as well-known references we use two stress
measures derived from the loss function of multi-dimensional scal-
ing (MDS) [Tor52; Kru64; GS96]. The stress measures how well
the projected data represents the original data globally. In this work,
the focus lies on the preservation of local neighborhoods. There-

fore, we focus more on the M1 and M2 scores. We provide more
details on the calculations in the supplemental material.

M1 and M2 Scores. Venna and Kaski [VK01] proposed the M1 and
M2 scores specifically for the application of dimensionality reduc-
tion methods for the visualization of high-dimensional data. For
this use case, the authors define two possible errors with respect
to the preservation of the k-neighborhood of a data point: Either a
point is wrongly projected into a new neighborhood, or a point is
projected away from its original neighborhood. They define the M1
score to measure the first error, which they label the trustworthiness
of the projection; and the M2 score to measure the second error,
which they label the preservation of high-dimensional neighbor-
hoods. Both values are defined for neighborhoods k ≤ N

2 and have
values between 0 and 1, where higher values indicate better scores.
A low M1 score indicates that many data points are projected into
new neighborhoods, which means that new cluster could emerge, or
that existing clusters are exaggerated. The M1 score can therefore
be interpreted as a measure for the trustworthiness of the visualized
neighborhoods. The M2 score measures how many points were pro-
jected away from their original neighborhood and, thus, indicates
how well the original neighborhoods were preserved in the projec-
tion. We use the equations as they were proposed by Venna and
Kaski [VK01]. We choose the k depending on the nature of the
data: For the grid-based data in the Wildfire scenario (Section 5.2),
we choose k = 8, such that all immediate neighbor cells on the grid
are selected. As the spatial layout in the COVID-19 scenario (Sec-
tion 5.1) is based on countries, and most countries have at most
5 neighbors [CIA20, Field 281: “Land boundaries”], we choose
k = 5 as a suitable heuristic. We cap k to kmax =

⌊N
2
⌋

for a subtree
of size N to keep the metrics well-defined for smaller subtrees.

Metric and Non-metric Stress. We calculate two different stress
metrics. Metric stress (Sm), which is the loss function of classical
MDS [Tor52; GS96], and non-metric stress (Snm), which is the loss
function of non-metric MDS [Kru64; GS96]. Sm is zero if the ele-
ments of the original and projected distance matrices are equal, Snm
applies a rank-preserving transformation beforehand and is zero if
their rank order is equal. Before calculating Sm, we normalize the
distance matrix by its maximum value. For both measures, a low
value indicates a good projection, and both are within [0,1]. For the
stress measures we followed the implementation guidelines Gal-
braith et al. [GMBS02] provide and otherwise use the formulas as
introduced in the original papers. Because we do a dimensionality
reduction from 2D to 1D, some stress is unavoidable, and we argue
that the M1 and M2 scores are better for assessing projection qual-
ity, especially for locality preservation. We still include the stresses
because analysts might be more familiar with their interpretation.

4. Comparing Projections

Different projections from the geospatial domain to the discrete 1D
ordering are most suited for different tasks and data. In this sec-
tion, we demonstrate the effect of the projections on different test
datasets we generated, and discuss the implications. For the test
datasets, we use simple mathematical models without the addition
of noise to generate a ground truth for patterns. The first dataset is
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(a) Spreading Ring
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(b) Graph-based Spreading
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Figure 5: Two artificial spatio-temporal patterns; (a) a spreading ring of higher values, and (b) diffusion of a higher value through a graph
network; are projected using our approach. For the grid-based data in (a), the space-filling curve projections perform better, whereas for the
irregular entity positions in (b), the AHC-based projections perform better. We refer to the supplemental material for more examples.

generated on a regular grid, resembling the data in the Wildfire sce-
nario (Section 5.2), whereas the second dataset is generated with an
irregular geospatial layout, resembling the data in the COVID-19
scenario (Section 5.1). We describe the dataset generation in more
detail and explore different variants in the supplemental material.

Spreading Ring. The first test dataset we generated was of a
hotspot (T1) that started as a single location (trendsetter, T3) and
then spread outwards as a ring over time, with the values falling off
to zero again in the center. We observed such patterns, for example,
in the Wildfire dataset, where fires would start in one place, spread
outward, and run out of fuel in the center (Figure 6c). The result-
ing projections (Figure 5a) show the cells mapped to the horizontal
axis, and the time steps mapped to the vertical axis. The increase
of cells with high values over time can be seen in all projections,
but Hilbert and Morton projection seem to perform best, revealing

a chevron-like pattern with a clear origin. This is not surprising,
as the data is grid-based, just like these space-filling curves. The
AHC-based projections perform worse, which we attribute to the
fact that all geospatial entities are the same distance apart. The lat-
ter affects the hierarchical clustering negatively. The criteria which
consider distances between clusters, not between cluster members,
seem to perform better, with larger bits of contiguity. With these
linkage criteria, the result is close to a balanced binary tree, and the
projection very close to what we get with a Morton curve. For the
Hilbert projection, we can also see that the contiguity of the pro-
jected pattern is very good initially, up to the point where the ring
extends into other quarters of the spatial domain. At that point, the
projection introduces discontinuities.

Graph-based Spreading. We generate one dataset with entities
in an irregular geospatial layout. We connect the entities by links
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within a cutoff-radius and simulate the spreading of a disease via
the links, using a simple model. In this model, one entity’s values
over time are fixed, and the other entities’ values at time step t +1
are derived from its own value at time t, as well as those of the
linked entities. This results in the values from one entity slowly
propagating through the graph, as can be seen in Figure 5b. The
fixed entity is visible because of its higher values, and the spreading
pattern shows up in all projections. In this case, the data is not on
a regular grid, and the AHC-based projections perform far better.
With the single linkage criterion, the connected parts of the graph
are even projected to a continuous range.

Both datasets reveal patterns, and the resulting projections are
comprehensible. The shapes differ between projections, and will
do so as well with different spatial layout of the data, but we can
observe general similarities in the generated patterns which could
provide starting points for interactive analyses in real-world ap-
plication scenarios. We generate those patterns without the noise,
incompleteness, multiplicity, and distortions present in real-world
data as a ground truth. We were also able to find them in real-world
data, such as in Figures 1, 6c and 7a. As size, rate of change, and
starting position affect the clarity of patterns, we also explore dif-
ferent parametrizations, as well as an additional pattern, in the sup-
plemental material. We also notice that the stress measures never
go below 0.4, but increase for the DTW-based projection, which
does not consider spatial layout. We conclude that these stress val-
ues are sensible for a dimensionality reduction from 2D to 1D.
For reference, classical MDS on the grid positions in Figure 5a
yielded Sm = 0.4805, Snm = 0.4424, and non-metric MDS yielded
Sm = 0.4711, Snm = 0.4364. The M1 and M2 scores are also very
good for all projections but the DTW-based one.

5. Application Scenarios

To show the versatility of our approach, we applied it to two
datasets with different data properties and spatio-temporal resolu-
tion. The first scenario visualizes the current spreading of COVID-
19 virus infections on a world-wide scale with daily updates. The
second scenario shows the development of wilderness fires in Aus-
tralia on a smaller spatial scale. Our approach can also be applied
to other datasets of time series data attributed to geospatial entities.

5.1. COVID-19 Cases

In the first scenario, we investigate the spatio-temporal spreading
of diseases. During an outbreak, decision makers need to under-
stand the spreading behavior of a disease, its dynamics, and its re-
curring spatio-temporal patterns. We chose data from the COVID-
19 pandemic to assess the ability of our approach to help identify
these patterns. The public domain data is obtained from COVID At-
las [Cov20a; Cov20b]. We generate a hierarchical dataset of con-
firmed and active cases for each day, starting from January 12, 2020
and spanning about 500 days at the time of publication. We normal-
ize both measures to the count per 1M capita. On the highest level,
the data is aggregated on a per-country basis. For most larger coun-
tries, state or province data is included on a second level, and for
the United States, a third level of hierarchy contains data on county
level. Figure 3 shows a screenshot of the prototype with the data.

Hotspots

(a) Spatio-temporal hotspots: Several central European countries experi-
ence a strong increase in COVID-19 cases at the same time (l). A contigu-
ous region of western Australia experiences a period of wildfire activity (r).

NJ NY
RIDCCT

Synchronization

(b) Synchronization of an early and drastic increase in COVID-19 infection
numbers in New Jersey and New York (below label). Infection numbers in
Rhode Island; Washington, D.C.; and Connecticut follow a few days later.

2019-11-30 2019-12-01 2019-12-03 2019-12-06 2019-12-09

Trendsetter

(c) Ring-like wildfire spreading pattern with trendsetters. The wildfires run
out of fuel or get extinguished in the center, but propagate outwards over
the course of several weeks.

Figure 6: We observe several spatio-temporal patterns of interest
in the application scenarios: Hotspots (T1) are contiguous spatio-
temporal regions of high values, synchronizations (T2) are similar
temporal progressions outside of the geospatial context, and trend-
setters (T3) are the starting point of a local pattern.

We use a logarithmic threshold scale to categorize the confirmed
case counts, to account for the exponential growth of the pandemic.
In the projected timeline, each day in the data is represented by
one rectangle for each element. The progression of confirmed cases
over time for one location is visualized as a line chart in the detail
timeline, as well as the number of active cases, if available.

Figure 6 shows examples for analysis targets that match the
domain-specific tasks (Section 3.1). One important task is to iden-
tify hotspots (T1), which indicate regions with a surge of cases.
Such hotspots might trigger allocating more resources towards that
region for disaster mitigation. Figure 6a (left) shows one such
hotspot in central Europe, where some countries’ infection num-
bers rose faster than in surrounding countries.

Another task is to identify locations outside of the geospa-
tial context with similar progression, synchronization (T2). In Fig-
ure 6b, New York and New Jersey (as well as RI, DC, and CT) can
be identified as synchronizing, which might indicate paths of in-
fection or similar strategies in dealing with the infection. For this
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2020-03-13 2020-03-24 2020-04-13

Trendsetters

(a) Trendsetters in the COVID-19 data for counties of Michigan, US.

(b) DTW projection of the country-level COVID-19 data.

(c) Projection of the country-level COVID-19 data using AHC with the cen-
troid linkage criterion, using air traffic volume between countries as an
inverse distance measure. Switzerland, the Netherlands, France, Spain, the
United Kingdom, and Ireland form a synchronization pattern (T2) that could
be due to high passenger exchange between the countries.

Figure 7: Projected timeline patterns for the COVID-19 scenario.

regional analysis, we could either identify these early, simultane-
ous peaks directly in the timeline and interactively retrieve more
information about the entities; or we could find them via anima-
tion using the map and the animation pane. We could also find
trans-regional synchronization, for example, by selecting contigu-
ous similarities in the DTW projection (Figure 7b). Finding syn-
chronization, as well as regions with different progressions, might
also help decision makers to quickly identify regions with a syn-
chronized spreading behavior to take local measures for regions
with a very dynamic spreading behavior.

Finally, trendsetters (T3) might indicate regional outbreak ori-
gins of the pandemic (Figure 7a). Identifying trendsetters reveals
trans-regional paths of infection and helps identify what movement
to restrict. One goal of decision makers during the COVID-19 out-
break 2019/2020 was to contain the spreading of the virus to protect
the population, while keeping the economic impact minimal. Iden-
tifying the most problematic sources of disease spreading would al-
low other, vital, infrastructure to remain operating. Trendsetters can
be found manually by searching in the projected timeline. However,
our approach also offers two projections which facilitate this task;
the DTW projection groups timelines with similar progression, and
the first-peak projection.

5.2. Australian Wildfires

The second scenario is a forest fire management scenario. Better
planning and organization of forest fire prevention and forest fire
suppression are necessary to counter their increasing impact. A
key role to improve forest fire management performance is “how
fire managers assimilate various types of information into decision
processes” [DCT17, p. 551]. We chose the 2019/2020 Australian
wildfire season to showcase the ability of our approach to help iden-

tify spreading patterns. The data has a spatial resolution of 1km2

and a temporal resolution of approximately one day, depending on
the overpass times of the satellites. We use data from September
2019 until February 2020 and aggregate it into three hierarchy lev-
els based on squared grid cells with a side length of 1km, 10km,
and 100km, respectively. As main attribute for the fire intensity we
use the fire radiative power (FRP) [GNL20]. We aggregate by sum-
mation, following the provided coarsening procedure [GSHJ15].

The identification of a fire and its spatio-temporal extent is
the first task in any wildfire analysis. These hotspots (T1) are di-
rectly visible in the projected timeline overview. As shown in Fig-
ure 6a (right), regions with fire activity can be identified as clusters
in the overview. By selecting a rectangular area around a hotspot,
the analyst sees the affected area highlighted in the map above, and
more information in the detail timeline (T4 and T5). This allows
them to further explore the data. In the context of the wildfire sce-
nario, a trendsetter (T3) describes a region where a fire started and
propagated to its neighboring regions. A trendsetter can be identi-
fied in the projected timeline overview as a time-lagged staggered
pattern, like for example in Figures 1 and 6c. Starting from this re-
gion, an analyst can identify the time-lagged pattern in the regions
around the trendsetter region.

For an exemplary usage scenario, an analyst is interested in wild-
fires in the end of November, beginning of December, 2019. Using
the time control (Figure 3a), they select November 30, and notice a
hotspot in the map and the timeline (Figure 6a right). They identify
a central cell of interest in the hotspot and select it by clicking on
it in the map. They then fine-tune the cutoff radius of the neigh-
borhood to include only the neighboring 8 cells. As the analyst is
interested in a projection that preserves neighborhoods well, they
order the projections in descending order of their M2 metric (Sec-
tion 3.6). By hovering over the selection in the timeline, the ana-
lyst can compare the contiguity of the selection in different projec-
tions (Figure 4b), and identifies AHC with complete linkage cri-
terion as a good choice that has a high M2 rating as well as good
contiguity. Hovering over AHCcomplete in the projection list, they
can also confirm that the projection overall retains large blocks of
the current Hilbert projection (Figure 4a). The analyst now drills
down into the selected entity by scrolling in the timeline, and then
again into an individual entity of high FRP value. On the lowest
level of the hierarchy, they now see two entities with high values,
trendsetters (T3). By stepping through the following days, they can
see the wildfire spreading in a ring-like pattern, which they can also
identify in the detail timeline by its chevron shape when selecting
a four-week time frame in the overview timeline (Figure 6c). Such
analyses can be sped up by preparing analysts with generated pat-
terns that reveal the typical shape of projected spatio-temporal phe-
nomena, such as the spreading-ring pattern discussed in Section 4.

6. Expert Feedback

The presented framework has been developed by applying an iter-
ative design process where we presented an intermediate version
of the prototype to two external visualization experts and four do-
main experts. Each of them tested the prototype with the presented
datasets. Overall, the participants mentioned the projected timeline
as the key advantage of our approach compared to their usual set
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of tools. One participant noted that “traditional GIS-based visual-
izations mostly resort to animation or temporal filtering to let the
user interact with the temporal features of the data.” They argued
that change blindness made it hard to draw conclusions over larger
time spans, and that existing 1D embeddings suffer from projection
errors that are not properly communicated to the user, whereas the
distance bar of our approach gave them more confidence in inter-
preting the data.

Based on their feedback, we added the tooltips for comparing
and understanding different projections. In addition to the geo-
graphically driven projections, we also added projections based on
DTW [SC78]. This addition allows to identify geospatial entities
with similar time series progressions (synchronization, T2) outside
of the geographical context. While this approach is currently lim-
ited to global time series similarity, it already yields interesting
results, as shown in Figure 7b. Finally, one expert suggested in-
cluding air traffic as a topology for the COVID-19 data. We did so,
considering the number of passengers flying between two countries
as an inverse distance metric. For pairs of countries with no flight
data, and for geopolitical subdivisions, we fall back to geospatial
distances. Using the air traffic distance metric reveals some pat-
terns (Figure 7c), but we do not know if those patterns are meaning-
ful , especially considering the age of the flight data. We consider
this projection to be a proof of concept, where real-world analyses
would require acquisition of more recent and more detailed travel
data, including on sub-country levels.

7. Discussion

Based on the expert feedback and by applying the approach to dif-
ferent datasets, we identified some aspects worthwhile discussing.

Guidance on Projection Methods. The choice of projection
method affects the visual outcome of the projected timeline, and
thereby the start of an analysis. To support analysts, we have pro-
vided the quality metrics, and specifically the M1 and M2 metrics
that consider locality preservation. While these metrics indicate
potential candidates, our approach supports versatile applications
and datasets with different data characteristics and requirements.
Therefore, we provide facilities to interactively compare projec-
tions, both globally and for data selections, allowing analysts to
interactively select a fitting projection for the data and task they
are currently facing. Nevertheless, we have observed some gen-
eral guidelines that supplement the quality metrics and interactive
comparison: For grid-based data such as our wildfire scenario, the
space-filling curve projections are more suited. Additionally, while
geospatial context is an important part of our approach, for time-
oriented tasks such as synchronization (T2) or trendsetters (T3),
switching to our time-focused projection options can help. For
the identification of spatio-temporal regions of interest, knowledge
about typical patterns that emerge, and how they manifest in the
projected timeline, is helpful. We identified two such patterns in the
application scenarios and generated isolated variants in Section 4.
In cases where patterns of interest are already known, this process
can help get the analysis of new application scenarios started faster.

Target Audience. The presented approach addresses domain ex-
perts to support decision making. We can see our approach being

applied, for example, by disaster managers and prevention analysts,
who need to identify regions in particular need of support. Depend-
ing on domain-specific tasks, individual parts of the visualizations
(e.g., glyphs) could be modified. Based on the feedback we re-
ceived by the experts (Section 6), we argue that our approach can
be greatly beneficial especially when context data is incorporated
into the visualization to see the larger picture.

Scalability. The presented datasets cover different scales of tem-
poral and spatial resolution (Section 5). Our hierarchical aggre-
gation approach, combined with timeline visualization, supports a
high visual scalability in temporal as well as spatial dimension. By
also hierarchizing the temporal data, the approach’s scalability in
the temporal dimension could be improved even further. Our web-
based prototype has been able to run smoothly on larger datasets
(> 50,000 entities), such as one for the wildfire (Section 5.2) cover-
ing Australia entirely. Further optimizations, such as using WebGL
for rendering, could be applied in the future.

Generalizability. Our approach is applicable to various scenarios
that involve temporal changes within a spatial context. This in-
cludes single-value, as well as multivariate data. Furthermore, the
concept is extendable by replacing glyphs or the visualizations in
the detailed selection by alternatives that fit to a specific applica-
tion scenario. While we focus on spatio-temporal analyses (Sec-
tion 3.1), we want to point out that both the spatial and the temporal
aspect of our approach could be substituted; for instance, the tem-
poral aspect could be replaced by a different, continuous variable
such as depth, visualizing nutrient density or temperature measure-
ments in the oceans to support marine biologists.

8. Conclusion

We introduced a new technique for the analysis of spatio-temporal
phenomena in a geographical context. By combining animation,
glyphs, and spatially ordered 1D projections in multiple coordi-
nated views, we support top-down and bottom-up analysis scenar-
ios. The visualization supports the choice of appropriate projec-
tions for the task at hand and the analyst can compare different
projections while investigating. We demonstrated the versatility of
our approach in the application scenarios with feedback from do-
main experts. Additionally, we explored and discussed the effect of
our projections on simple, artificial spatio-temporal patterns mod-
eled after observed real-world patterns, generating a ground truth
for the detection of such patterns in real-world data. Future work
might include exploring time series similarity projections based on
local similarity of an interactively selected time frame, thereby ex-
tending the current, global, time series similarity projection.
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