
© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Power Overwhelming: Quantifying the Energy Cost of Visualisation
Christoph Müller*

Visualisierungsinstitut
der Universität Stuttgart

Moritz Heinemann†

Visualisierungsinstitut
der Universität Stuttgart

Daniel Weiskopf‡
Visualisierungsinstitut

der Universität Stuttgart

Thomas Ertl§
Visualisierungsinstitut

der Universität Stuttgart

Figure 1: The test bench used in our experiments: All significant power rails of the system are redirected through Texas Instruments
INA226 power monitors on Tinkerforge bricklets. Additionally, a Rohde & Schwarz HMC8015 power analyser is used to log the total
power draw of the power supply. Oscilloscopes can be used to probe the power rails of the GPU at the probing points of the riser
card installed between the PEG slot and the GPU.

ABSTRACT

GPUs are the power-hungry tool of many visualisation researchers.
However, their energy consumption has mostly been investigated
outside the visualisation community, albeit our algorithms can gen-
erate more complex workloads than compute kernels. Additionally,
a raising number of web-based visualisations potentially makes con-
sumers other than the GPU more relevant. We present measurement
setups for quantifying the energy cost of visualisation, ranging from
software sensors over external power meters and micro controller-
based setups to using oscilloscopes. These setups cover energy
consumption of GPUs, CPUs and other components of a computing
system. Using raycasting of spherical glyphs, volume rendering and
D3 visualisations as examples, we show that there are viable options
for evaluating most kinds of visualisations. We conclude by stating
the challenges to a broader application of these techniques and by
making recommendations on how to overcome these.

Index Terms: Hardware—Power and energy—Impact on the envi-
ronment; Hardware—Hardware test—Board- and system-level test;
Human-centered computing—Visualization—Visualization systems
and tools

1 INTRODUCTION

Graphics processing units (GPUs) and their enormous parallelism
and computational power are a key tool enabling many of the ad-
vances in visualisation in the past decades. However, this compu-
tational power comes at the cost of GPUs being the single most

*e-mail: christoph.mueller@visus.uni-stuttgart.de
†e-mail: moritz.heinemann@visus.uni-stuttgart.de
‡e-mail: daniel.weiskopf@visus.uni-stuttgart.de
§e-mail: thomas.ertl@visus.uni-stuttgart.de

energy-hungry component in a computer nowadays, wherefore one
would expect that energy consumption and the influence of visuali-
sation algorithms on it being under close scrutiny [23]. This has not
been the case so far, and we argue for a systematic investigation of
energy consumption of visualisations. Several methods of different
complexity exist for doing that, which we will compare in this pa-
per using a few exemplary algorithms as a blueprint for what will
hopefully expand into a broader initiative, eventually providing an
overall understanding of the energy cost of visualisation.

The measurement procedures are largely borrowed from research
on energy consumption of graphics accelerators and its optimisation
in software in the context of high-performance computing (HPC),
where GPUs facilitate massively increasing the compute density in
clusters [7,30]. On the flip side, their energy hunger becomes the lim-
iting factor when reaching the next petaflop or exaflop target, albeit
a superior computation-per-Watt efficiency compared to traditional
processors caused a leading manufacturer of discrete graphics cards
to tout that “The future of HPC is green”. Furthermore, GPU-based
systems are nowadays prevalent when it comes to training machine
learning (ML) models and performing inference. These are widely
used in industry where the electricity bill becomes a relevant factor,
which sparked some research in optimising power consumption of
ML kernels [19, 21]. And in the mobile space, running on a battery
necessitates at least some economic handling of power to maximise
battery life [15].

Visualisation research, in contrast, seems to widely ignore this
aspect while focusing on positive effects that might inspire the public
to save electricity [17]. In turn, we know surprisingly little about
the influence of software and algorithms on energy consumption
in particular. On the lowest level, one might ask whether one of
two distinctly different algorithms for achieving the same result
is more energy efficient than the other, or whether and when a
higher frame rate correlates or anticorrelates with a higher power
draw. Does increasing the sampling rate – and thus the image
quality – of a volume renderer also increase energy consumption?

1

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Are dedicated ray-tracing units on the GPU more power-efficient
than using compute or pixel shaders? Do browser-based visualisation
techniques primarily draw power via the CPU or via the GPU? How
does interacting with a visualisation influence the energy cost? Are
the findings from the HPC area transferable to the graphics pipeline?
The answer to these questions is to a large extent: We don’t know.

Information and communications technology (ICT) as a whole
was estimated to account for more than 2 % of the yearly global emis-
sions of carbon dioxide in 2018 [24] – roughly the same as all air
traffic. Predictions see it account for 20 % of the total electricity de-
mand within a decade or two, albeit computing hardware becoming
more and more power efficient at the same time [4, 20] – virtually
a prototype of the so-called rebound effect. The largest fraction
of this increase is assumed to be for the “communication” part of
ICT [24], so one could argue that it is unlikely that the relatively
small number of users pushing their discrete GPUs to the limit for
visualisation would have a big impact. However, we argue that it is
irresponsible to rely on “believing” and “guessing” for facts that can
be empirically quantified by simply measuring them.

As a first step in this direction, we evaluated the energy consump-
tion of two scientific visualisation techniques and several web-based
information visualisations on Observable HQ. We performed mea-
surements using different techniques, describe how to set these up
(cf. Fig. 1) and which of them are most suitable for evaluating vi-
sualisation algorithms. As we obtained all numbers at the same
time, we can compare the results against each other, thus finding
a reasonable trade-off between reliable numbers and the financial
and work effort required for obtaining them. Our numbers show
that there are interesting things to discover in the area while obtain-
ing reliable measurements is almost trivial under certain conditions.
We also discuss challenges and problems for the non-trivial cases
and contemplate how we as a research community can foster the
collection of power-related data in publications.

2 BACKGROUND ON MEASURING POWER CONSUMPTION

Before going into details, we briefly want to recapitulate some basics:
By measuring the electric potential difference, or voltage U [V], and
the electric current I[A], we can derive the instantaneous apparent
power S[VA] = U · I. As the circuits on the low-voltage side of a
PC power supply run on direct current (DC), the real power is the
same: P[W] = S =U · I. Voltage can be measured using voltmeters
or oscilloscopes. Measuring current is, in our scenario, typically
performed by either introducing shunt resistors in the circuit or non-
destructively by using Hall-effect sensors [36]. When using shunts,
we exploit Ohm’s law, stating for a resistor of known resistance R[Ω]
the voltage is proportional to the current: U = R · I. When measuring
the voltage drop across the shunt, we can simply solve this for I.
Hall-effect sensors exploit the fact that charges running through a
conductor in a magnetic field that is perpendicular to the conductor
experience a force which in turn induces the so-called Hall voltage.
This voltage is again proportional to the current.

2.1 GPU management libraries
The easiest way to obtain power measurements from a GPU with-
out adding sensors at all is by querying the driver for it. Both
major manufacturers of discrete GPUs expose such functionality
via their management libraries, the NVIDIA Management Library
(NVML) [33] and the AMD Display Library (ADL) [3]. Obviously,
the reliability of that information depends on where the software
gets its input data from. In case of NVIDIA’s product, we know
from the activities of the overclocking community (who engage in
a technique called shunt modding to trick the GPU into allowing
higher currents by changing the overall resistance of the shunts)
that the manufacturer controls the overall power consumption of
the whole board quite tightly [2]. In order to do so, NVIDIA has
placed shunt resistors on effectively all of the power inputs of the

Figure 2: A GPU attached to a riser card used for intrusive measure-
ment methods. The riser has probing points for the power provided
through the PEG slot. On its back side, two cables for the 12 V and the
3.3 V rails have been soldered on the card. These are used to funnel
the power through the power sensors on two Tinkerforge bricklets.

board, power cables and the PCI Express Graphics (PEG) slot [40].
We attribute this design to the fact to the assertions NVIDIA makes
about the power draw of their data centre products, wherefore they
require accurate measurements to throttle the hardware accordingly.

Less is known about AMD’s implementation, except for that their
numbers only include the core components, mostly the chip and the
memory, but not all power-drawing components on the board [40].
Besides the insecurity about the source of the measurements, using
management libraries has the obvious disadvantage that they only
cover the GPU itself, not the other components in a computer.

2.2 External power meters
External power meters solve the latter problem as they measure the
total power consumption of the computer. They are added between
the wall socket and the power plug and are therefore easy to use.
The devices come in different varieties ranging from simple ones
for home use just displaying the instantaneous power draw to pro-
fessional power analysers with continuous logging capabilities. If
the goal is measuring the overall power cost of visualisation, this
might be sufficient. However, such measurements do not provide any
insight into the behaviour of individual consumers in the system, nor
do they provide clear guidance for optimising power consumption.

2.3 Intrusive measuring methods
A third option is adding power meters between the power source and
the consumer within the system. For GPUs, an appliance-like device
exists in form of the Power Capture Analysis Tool (PCAT), which is
part of the NVIDIA Reviewer Toolkit for Graphics Performance [37].
This appliance comprises a riser card for measuring the power drawn
from the PEG slot as well as pass-through sensors for the PCI
Express (PCIe) power cables, allowing for externally measuring
the overall power drawn by a PCIe card. Unfortunately, NVIDIA
distributes these kits only to selected tech journalists and we could
not get our hand on any of them. However, it is possible to build a
similar setup using micro controllers. The idea is cutting the PCIe
and ATX (Advanced Technology Extended) power cables in two and
adding a probe with voltage meters and shunt resistors in between.
This allows for measuring not only the GPU, but also the CPU
and other components in the system. Our setup uses Tinkerforge
Bricklets in a way similar to Wallossek [40] in a combination with
a PCIe riser card (see Fig. 2) that exposes probing points for the
power lines of the bus. The setup has a decent temporal resolution
to observe running software over an extended period of time and can
be controlled via a variety of programming and scripting languages.

2

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

2.4 Oscilloscopes
Oscilloscopes offer the possibility to measure voltage changes – and
using special current probes also electric current – at a high temporal
resolution. At a sampling rate of several hundreds of megahertz,
it becomes possible to observe the power draw of the GPU within
a single frame. To capture the complete behaviour of the GPU, a
voltage and a current probe are required for each of the 12 V and
the 3.3 V lines of the PEG slot as well as for each of the 12 V PCIe
power cables [40]. As the voltage probes can be stuck into the power
plugs and the current probes are contactless Hall sensors, the pro-
cedure is only minimally invasive. Physical modifications are only
required to the riser card, which is needed to access the PEG slot:
a wire loop needs to be soldered to the board to clamp the current
probe around it. For measuring the voltage, some riser cards already
provide dedicated measuring points where the probe can be attached.
As most oscilloscopes have only two or four connectors, two devices
need to be stacked to capture the whole picture, making this a par-
ticularly expensive solution. Furthermore, it generates a significant
amount of data, which might not be necessary for learning about, or
optimising, the power consumption of visualisation software.

3 RELATED WORK

As early as 2012, Johnsson et al. [23] performed a study of the
power consumption of OpenGL- and OpenGL ES-based rendering
algorithms, followed by a more detailed investigation of how to
measure per-frame consumption [22]. They argue that power is
becoming the limiting factor for further improvement in rendering
performance due to the increase of current leakage when scaling
down the size of transistors [6]. In their experiment, they used
a custom-made sensing board using a combination of Hall-effect
sensors and shunt resistors to measure all power inputs to discrete
GPUs from AMD and NVIDIA as well as the integrated graphics of
an Intel CPU and an iPhone SOC. While they observed that deferred
rendering was more power efficient and faster than forward rendering
in most cases, their results show that this is not trivially predictable
and most notably that better frame rates do not consistently require
more or less power than worse ones. Therefore, they concluded “that
[power consumption] will become an integral part of most graphics
research papers in the near future. We speculate that it will become
as common to report joules per pixel as it is to report milliseconds
per frame today”. At least for visualisation research, this has not
happened as of today – authors report energy only if they specifically
focus on this topic. For instance, Heinemann et al. [15] analysed the
influence of rendering parameters and rendering APIs on the power
consumption of a volume raycaster on a mobile device. We can
only surmise the reasons for that lack of empirical results: perhaps,
there is a lack of awareness of the significant power draw of our
tools; perhaps, our community just does not care; perhaps, building
a custom sensing board is too high of an entry barrier.

Consequently, most of the research on power consumption fo-
cuses on the general purpose GPU (GPGPU) or HPC cases where
scaling up the GPU density quickly raises the need for energy. Mittal
et al.’s survey [30] not only investigates power efficiency of GPUs
in this context, but also includes techniques for improving energy
efficiency. Bridges et al. [7] later extended the problem space by
not only surveying measuring methods, but also including model
building for [18, 27, 28, 32] and simulation of [26, 35, 39] the power
consumption of GPU clusters. Such models derive the power draw
from low-level hardware counters, e. g. from tallying the number of
shader invocations or texture accesses, instead of measuring it di-
rectly. Bridges et al. see a strong correlation between these counters
and power use, although the complexity and parallelism of modern
GPUs presents new hurdles for power modelling.

Starting with its Kepler architecture, NVIDIA provides relatively
accurate numbers for instantaneous power draw from on-board sen-
sors. Burtscher et al. [9] provide a methodology to derive an accurate

value for energy consumption from these readings. However, they
did not obtain ground truth using external ways of sensing like oscil-
loscopes and external power meters [11, 12], but based their method
on a theoretical profile of the GPU’s power draw.

Instead of using counters, models can also be derived from NVML
power readings during micro benchmarks and based e. g. on instruc-
tions in NVIDIA’s PTX assembly of the benchmarks. Arafa et al. [5]
performed a series of micro benchmarks of PTX for measuring the
power usage of low-level instructions like addition, division etc.
They compared the results of sampling NVML in the thread submit-
ting the GPU workload as well as in parallel with the more abstract
and vendor-independent Performance Application Programming In-
terface (PAPI) [42] and ground truth obtained from hardware-based
measurements. These were gained from a custom-made riser with
shunt resistors for the PEG slot and an oscilloscope with a voltage
probe and a Hall-effect power clamp for the PCIe cables. The authors
conclude that sampling the internal sensors via NVML in a parallel
thread to the actual workload yields the most accurate results. While
the methodology of how to use NVML is transferable to graphics
and visualisation workloads, micro benchmarking is a technique
tailored towards the GPGPU application case. In contrast, graphics
workloads are pipelined, comprise non-programmable stages like
the rasteriser and output merging and are – depending on the API –
subject to under-the-hood optimisations of the driver, such that it is
more difficult to predict what the GPU is actually doing at a single
point in time.

Dynamic voltage and frequency scaling (DVFS) is a way to ac-
tively influence GPU energy consumption. It adjusts the core and
RAM frequency and voltage of GPUs to optimise the power draw
while almost not affecting performance [1]. In some cases, signifi-
cant energy savings up to 20 % can be achieved using this technique,
but the success is highly dependent on the actual application [29].

Aside from the many GPGPU application cases, the power con-
sumption of computer vision [34] and lately artificial intelligence
applications [19, 21] have been researched. In case of the latter,
the main goal is to balance power and performance based on the
observation that GPU clusters for machine learning are most ef-
ficient if the GPUs are fully saturated. Finally, there exists work
on modelling and reducing the power consumption of displays via
optimised colour mappings for visualisations [10] and on optimising
the energy budget for rendering applications [41].

Studying the energy consumption of visualisation algorithms
requires benchmarks for such algorithms. Our work is relying on
the one of Bruder et al. [8], who performed a systematic study of the
runtime performance of rendering spherical glyphs and of volume
rendering. While their sole focus was runtime performance and the
relevant factors that need to be covered when evaluating it, their
framework provides an automated way to test combinations of these
factors, which we extended to include power measurements.

4 EXPERIMENTAL SETUP

We set up an experiment to test and compare the techniques de-
scribed in Sect. 2, namely (i) using on-chip sensors accessible by
management libraries provided by the GPU vendor, (ii) measur-
ing the overall system power draw by means of an external power
analyser, (iii) redirecting PCIe cables and the PEG slot through
Tinkerforge sensors and (iv) attaching an oscilloscope.

4.1 Hardware
Our test hardware is a typical PC configuration: AMD Ryzen 5900X,
ASUS ROG Strix X570-E Gaming, be quiet Dark Power Pro 1200 W
power supply unit (PSU), 64 GB RAM, solid state drive (SSD),
mounted on a test bench allowing for easy access to all wires, as
well as for changing the GPU quickly (see Fig. 1). As GPUs, we
employ an NVIDIA RTX 3090 (Ampère microarchitecture) and an
AMD Radeon Pro W6800 (RDNA 2 microarchitecture).

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

PSU

Mainboard
with CPU

ATX Power

CPU P8

CPU P4

GPU

PCIe Power

PCIe Power

PEG Slot

Figure 3: Schematic overview of all relevant power connections
(green) in a typical PC system.

External power meter Obtaining the overall power consump-
tion is fairly easy: We put a Rohde & Schwarz HMC8015 power
analyser between the wall socket and the PSU. The advantage of such
a professional device over consumer hardware displaying only the
instantaneous power draw is that it has logging capabilities to record
data over an extended period of time and an API which allows for
automating the measurements. Using the API, we synchronise the
internal clock of the device to the current time of the PC whenever
we start a measurement series to improve the temporal correlation
between data from the PC and the external numbers.

Intrusive measurements Using Tinkerforge bricklets, we mea-
sure the power usage of most components in the PC independently.
To do so, we cut the power connections on the low-voltage side of
the PSU (see Fig. 3) in two and place Voltage/Current 2.0 Bricklets
with Texas Instruments INA226 power monitors in between. All
of these connections comprise multiple cables, either because they
provide multiple voltages like the main ATX power connection or
because the larger overall wire cross section of a bundle of cables
is required for the current on the connection. As the bricklets only
have a single input and output connector for wires up to 2.5mm2,
we need to bundle each connection into a single wire on the “last
mile”. Fortunately, the last mile is only a few centimetres in length,
and we could not measure higher temperatures on this section of
the wire than on the original ones shipped with the power supply,
indicating that the reduced cross section is not an issue.

As already mentioned, GPUs not only get power via cables, but
also from the PEG slot itself. Therefore, in order to know exactly
how much power the GPU is using, we need to measure at the
slot. This can be achieved by using a riser board with power probing
points (see Fig. 2). While typically used for developing PCIe devices,
these boards can also be used to solely gain access to the power
connection. The Adex Electronics PEX16IX isolation extender we
are using has pluggable fuses in the power rails, which we replaced
by wires redirecting the connection through our power sensors. This
use has been envisaged by the manufacturer, and as we are not
testing any pre-production components, all hardware involved should
operate within their specifications as if directly connected to the
mainboard.

All in all, we are using ten sensors for the following measure-
ment points (Fig. 4): ATX 3.3V, ATX 5V, ATX 12V, CPU P4,
CPU P8, up to three PCIe power cables and PEG 3.3V and PEG
12V. The SSD is the only component we are not measuring at the
moment. Each of the power rails is sensed by a separate bricklet.
We asynchronously sample these every 5 ms, which seems to be
the fastest update rate before running into bandwidth issues in our
setup. The INA226 power monitor on the Tinkerforge bricklets
measures current and voltage sequentially one after each other in
short time windows, called conversion time in electronics, which we
set to 588 µs. Having the sensor average current and voltage over
four sequential samples of 588 µs each leads to a new measurement

Figure 4: The Tinkerforge bricks (stacked in the middle) and sensor
bricklets (arranged around the bricks) we used for measuring individ-
ual components in our system. We use the connection to the bricklets
also as measurement points for the oscilloscopes.

on the chip every 4.7 ms, which is the closest possible to the 5 ms
readout rate. Averaging and multiplication are done in background
and on chip without interrupting the measurement, which further
optimises bandwidth utilisation as we do not transfer current and
voltage samples we are not interested in for our current experiment.

Oscilloscopes Finally, we have two Rohde & Schwarz
RTB2004 digital oscilloscopes attached to the probing points of
the riser and the PCIe power cables of the GPU. As we need a volt-
age probe and an RT-ZC03 current clamp to compute the apparent
power of each connection, two devices with a total of eight ports are
required. As can be seen in Fig. 5 for the PCIe power cables, such
a setup allows for inspecting how the power consumption develops
within a frame. It should be noted, however, that we used it only
to manually check the plausibility while rendering the exact same
frame for a prolonged time and such high-resolution measurements
are not included in our automated benchmarking results.

4.2 Software
The software infrastructure for obtaining all power measurements
is implemented in a single C++ library1 that is designed to run
in-process in the benchmark programme and linked to the two appli-
cations we used for our experiments.

Power measurement library The collection of the data in pro-
cess contributes to the power consumption of the system. We expect
this contribution to be negligible, but quantifying it remains for fu-
ture work. The rationale behind the in-process solution is twofold:
first, measurements from the ADL and NVML management libraries
can only be obtained on the machine the test is running on. Second,
to achieve the best possible correlation between test cases and sensor
readings, we can rely solely on consistent timestamps from the bech-
marking machine wherever possible. One notable exception is the
external power analyser: in principle, it is possible to poll it for mo-
mentary readings via USB, but enabling logging mode on the device
itself and having it write its readings at its own sampling rate of ten
samples per second to a USB thumbdrive produces more consistent
results over long periods of time. These results are later correlated
with the other sensor readings and benchmark activities via time-
stamps, for which we programmatically synchronise the clock of the
device to the system clock of the benchmarking machine.

1https://github.com/UniStuttgart-VISUS/power-

overwhelming

4

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://github.com/UniStuttgart-VISUS/power-overwhelming
https://github.com/UniStuttgart-VISUS/power-overwhelming

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Figure 5: Measurements of the voltage and current probes of an
oscilloscope attached to the PCIe cables of an NVIDIA RTX 3090
while performing a volume rendering task. The odd-numbered probes
C1 and C3 are the voltage probes, whereas the even-numbered ones
C2 and C4 are the respective current clamps. The cyan-coloured
math chart is the combined apparent power of both power lanes.

Following the insights by Arafa et al. [5], the data we collect
in process are obtained in threads running in parallel to the bench-
mark itself. Correlation between the sensor readings and the bench-
mark activities is achieved by the benchmarking thread reporting its
progress to the collector thread, which also writes the data to disk.
The way how multi-threading works differs from sensor to sensor:
NVIDIA’s NVML is fully synchronous, i. e. the API needs to be
polled regularly for new readings. In case it is called more frequently
than it produces data, the same value is returned repeatedly – in our
experience, new values are provided approximately every 100 ms.
AMD’s ADL implementation is in principle asynchronous in that
the PMLog functions return a buffer where they regularly write new
data once the sensor has been started with a user-defined sampling
interval. Unfortunately, the API is not very well documented and
there seems to be no synchronisation mechanism whatsoever, which
would ensure consistency between the driver writing new data and a
client reading it. Although samples are produced asynchronously by
ADL, we copy the samples from the aforementioned buffer to our
log file in a thread separate from the benchmark. Tinkerforge offers
a synchronous and an asynchronous API. As mentined before, we
use the latter to avoid polling unchanged values multiple time, thus
wasting USB bandwidth. For the same reason, we register only for
the power callback, omitting voltage and current values, and have
the sensor compute the apparent power from consistent voltage and
current samples on chip. The samples we receive from the bricklets
are buffered and written to disk by the same thread that samples the
ADL or the NVML sensor, respectively.

Benchmarking software The scientific visualisation bench-
marks are based on the framework by Bruder et al. [8], which we
extended by our aforementioned library to include power measure-
ments in the benchmark code. We largely reused their implemen-
tation for raycasting spherical glyphs, but replaced the OpenCL
implementation for volume rendering by a new one using Direct3D
compute shaders in order to be able to compare pure compute shaders
and the combination of compute shaders with the graphics pipeline.

The second set of benchmarks are web-based visualisations. We
built a separate application using Microsoft’s WebView2 component,
which is basically Edge as a widget that we can control program-
matically, in order correlate the benchmarks with the measurements
from out library. By registering the appropriate event handlers, we
obtain notifications about what the browser is currently doing, most
notably, when a page is being loaded and when loading completed.

Figure 6: Renderings of the data sets used for the scientific visualisa-
tion benchmarks. From left to right: Randomly generated positions of
spherical glyphs, the chameleon volume and the foot volume.

5 EXPERIMENT

We measure the energy consumption of three visualisations in a
highly automated way, aggregating the sensor samples in a post-
processing step as necessary.

5.1 Test cases
The two test cases for scientific visualisation, rendering spherical
glyphs and volume rendering, are based on Bruder et al.’s [8] frame-
work. This framework processes each test configuration in several
phases: the first one is a prewarming phase, ruling out any un-
expected initialisation cost in the subsequent measurements and
providing an estimate for how long a single frame needs to complete.
This estimate is later used to run the benchmark for a user-defined
minimum time to measure the frame rate. We exploit this feature in
that we request the benchmark to compute the frame rate by counting
frames over at least 5 s. During this time window, we sample the
sensors every 5 ms, which slightly undersamples the Tinkerforge
sensors, but significantly oversamples the software ones. Given that
we are averaging over 5 s in the end, we think this kind of sampling
issues will not introduce much measurement bias.

Spherical glyphs Sphere rendering uses Direct3D 11 as ren-
dering API and covers the two main techniques available in the
benchmarking framework: raycasting on sprites generated in differ-
ent ways – we restrict ourselves to the generation of ray-aligned and
screen-aligned quads in the geometry shader and to instancing – and
tessellating the geometry of full spheres and hemispheres [8, 13, 14].
We use two data sets of randomly (with fixed seed value) positioned
spheres, one comprising 500,000 elements, the other 5,000,000
(see Fig. 6). The spheres have individual radii and a scalar intensity
value that is mapped to a colour via a transfer function. We sample
five positions on a path through the data set on the z-axis and an
orbit around the y-axis as well as five random positions. All tests
are performed on a 1024×1024 and a 2048×2048 viewport.

Volume rendering We have added two Direct3D 11 imple-
mentations for volume rendering, the first being a single-pass ren-
derer fully implemented in a compute shader. The second one uses
the graphics pipeline to compute all rays at once in an additional
pass [25] while the iteration through the scalar field is done in a
compute shader. Although not a reasonable approach as of today,
we include it to test the influence of using the graphics pipeline and
different shader stages. In both cases, we use the 2563 foot data set
and the 1024×1024×1080 chameleon (see Fig. 6) and perform a
pass without early ray termination and a second one with a threshold
of 0.99. Step sizes vary between 0.5, 1 and 2 voxel distances, and
the aforementioned camera positions and viewports are used.

Browser-based visualisation Measuring the energy consump-
tion of browser-based visualisations is substantially more challeng-
ing, because we have far fewer options to isolate low-level operations.
Moreover, Joules per frame as the quantity of interest is somewhat
meaningless if the application is not continuously redrawing and it
is impossible to determine at which point in time how many frames

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

0
50

100
150
200
250
300
350
400

1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048²

500000 5000000 500000 5000000 500000 5000000 500000 5000000 500000 5000000

Tessellated hemispheres Tessellated spheres Ray-aligned quads Instanced quads View-aligned quads

Av
er

ag
ed

 P
ow

er
 [W

]

NVML Tinkerforge (NVIDIA) ADL Tinkerforge (AMD)

Figure 7: The averaged instantaneous power consumption for different sphere rendering techniques as measured by the NVML and ADL libraries
as well as using Tinkerforge bricklets. The horizontal axis displays the controlled parameters, which are from top to bottom: the size of the
viewport, the number of spheres and the rendering technique.

have been completed. Our approach is therefore different here: we
determine how long the page is loading and sample the power sen-
sors during this phase and continue for 8 s while the loaded page
is being displayed. Afterwards, we show about:blank for 2 s and
repeat the process four times for each page. As test pages, we use D3
demos for basic charts (bar charts, line charts etc.), more complex
visualisations like a chord diagrams and parallel coordinates and
WebGL graphics, most notably “Dirty Planet”, which is a globe with
a data overlay. A full list including all URLs can be found in the
data set for this publication [31]. As we have noticed WebView2
seemingly perform some GPU-heavy tasks in the background right
after startup, we wait for 5 s before performing the first test in order
to exclude this effect, which is obviously unrelated to the bench-
mark, from our measurements. All browser-based measurements
are performed in a 3840×2160 full-screen window. One remaining
problem of this approach is that it does not account for the power
required to serve the pages nor for the network infrastructure.

5.2 Results
The amount of sensor readings we produced in this experiment are
enormous. Therefore, most of the numbers here are aggregated or
are chosen to highlight specific details, and we refer the gentle reader
to the whole data set [31] for the full set of measurement results.

Spherical glyphs Fig. 7 illustrates the averaged instantaneous
power readings for five methods of rendering spherical glyphs. Com-
paring the values from NVML and the bricklets, we see a deviation
between 3 % and 11 % for these tests. For ADL, this gap is between
14 % and 20 %. Looking at the actual values, it becomes obvious
why previous work [23] suggested using relative numbers: For the
RTX 3090, neither the technique nor the data set seem to have a big
impact on power consumption: the card is mostly running close to
its 350 W limit. In case of the W6800, the methods causing more
vertex load seem to require less energy than the raycasting-based
ones, which get close to the limit of 250 W for this card.

The whole behaviour is due to the fact that the benchmarks have
been designed to measure the prevalent metric for evaluating GPU-
based scientific visualisation: frames per second. In turn, power
efficiency boils down to the question of how many frames the al-
gorithm can produce within a given power limit, where Joules per
frame is directly dependent on the number of frames as long as
the absolute power draw remains the same. However, from an en-
vironmental point of view, absolute numbers do matter, and it is
not reasonable to render thousands of frames that are unnecessary,
even if each of them is very cheap. If we limit the frame rate to
the refresh rate of the monitor (60 Hz), the absolute power draw
(Tinkerforge sensors) drops drastically in effectively all cases: for
instance, tessellating 500,000 hemispheres requires between 35 W
(NVIDIA) and 41 W (AMD), roughly the same as raycasting on
instanced quads on a 10242 viewport. While increasing the number
of pixels to 20482 raises the power draw of tessellation to 39 W and

44 W, the power draw for raycasting more than doubles on NVIDIA
(76 W) and reaches 55 W on the AMD card. For the larger data set,
the effect is even more pronounced (300 W and 146 W for the 20482

viewport, as the renderer does not support conservative depth). At
the same time, Fig. 8 shows that the per-frame efficiency drops when
reducing the frame rate, making the frame rate an unreliable indica-
tor for ecoconscious visualisation. Overall, the effect of a limited
frame rate on the per-frame energy varies between a factor of 0.8 and
3.3. While there is a general trend that the efficiency of tessellation
is hit harder, which we attribute to the fact that the additional shader
stages prevent the GPUs from efficiently using their resources, it is
actually the raycasting on the W6800 for which the energy consump-
tion raises from 0.24 J to 0.78 J per frame, wherefore we consider
it reasonable to actually measure until we have developed reliable
power models for visualisation algorithms.

Volume rendering Limiting the frame rate consistently de-
creases per-frame power efficiency in this case, likely due to the fact
that compute shaders have a very uniform workload. For a sampling
distance of 0.5 voxels and the larger chameleon data set, we see very
consistent drop in efficiency by a factor of around 1.3 in all cases.
Again, these factors grow as the computational complexity decreases:
for the small foot data set and a sampling distance of 2 voxels, the
RTX 3090 uses 2.5 times the energy per frame for the single-pass
renderer and 1.9 times for the two-pass renderer – which is some-
what unexpected as we anticipated the additional shader stages to
have a negative impact. Again, a call for empirical measurements.

Browser-based visualisation Fig. 9 illustrates the instanta-
neous power draw over time by reference to the “Dirty Planet” vi-
sualisation rendering a spinning globe using WebGL. Maxing out
at approximately 120 W on the RTX 3090, the technique is not even
close to the power limit of the board, but the GPU is obvisously
working. The behaviour of the four test runs is, however, inconsis-
tent, which might be partially caused by varying loading times and
illustrates the imponderables of evaluating the energy consumption
of this kind of visualisations. Interestingly, the RDNA 2-based AMD
card has a high and oscillating power draw on the CPU, which can
be consistently observed throughout all of the visualisations, be it
the ones using WebGL or the basic charts drawing Scalabe Vector
Graphics (SVG). We have no explanation for that behaviour at this
moment, but as the power draw of the GPU is increasing as well,
the 3D work is not solely performed on the CPU. We also ran the
same tests on a Radeon Vega Frontier Edition based on the previous
GCN 5 architecture, which had a CPU power draw more in line with
the NVIDIA card – however with a much larger discrepancy be-
tween the ADL readings and our Tinkerforge measurements than in
case of the W6800. In general, we observe that the energy consump-
tion of SVG charts is mostly dominated by the CPU during page
loading, which peaks between 90 W and 100 W (for the dedicated
power cables) plus 40 W supplied via the ATX power connector

6

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

0
2
4
6
8

10
12
14

1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048²

500000 5000000 500000 5000000

Tessellated hemispheres Instanced quads

]J[e
marf rep ygrenE

NVML Tinkerforge (NVIDIA) ADL Tinkerforge (AMD)

0
2
4
6
8

10
12
14

1024² 2048² 1024² 2048² 1024² 2048² 1024² 2048²

500000 5000000 500000 5000000

Tessellated hemispheres Instanced quads

]J[e
marf rep ygrenE

NVML Tinkerforge (NVIDIA) ADL Tinkerforge (AMD)

Figure 8: Energy consumption per frame for the geometry-heavy tessellation method and the rasterisation/pixel shader-bound raycasting on
instanced quads. The left diagram shows the energy per frame when the GPU can render as many frames as possible, on the right side, the buffer
swap is synchronised to the monitor and therefore rate-limited.

minus the power drawn via the PEG slot (a large fraction of that
should go to the CPU as well), while the GPU is close to idle power
most of the time. The D3 “Chord Dependency Diagram” sample is
an interesting exception, built on SVG paths, but having a notable
GPU power draw of up to 140 W on the RTX 3090 and 60 W on the
W6800. One conclusion we therefore can draw is that for faithfully
representing the energy consumption of browser-based visualisa-
tions, a more holistic measurement setup than merely relying on
on-board sensors on the GPU is necessary – although that still does
not consider the server and transport aspects. Not only is the CPU
responsible for most of the power draw, but it is also not obvious
when the browser will use the GPU and to which extent. Finally, if
the power draw is low or unsteady, it becomes increasingly difficult
to correctly attribute the measurements to the visualisation as other
work performed by the operating system might interfere.

6 RECOMMENDATIONS AND CHALLENGES

Based on our experience and the state of the art in visualisation
literature and beyond, we see the following aspects that sould be
addressed to foster improved use of energy measurements and re-
porting in visualisation research.

There is a need for practical, accessible and reliable power mea-
surement setups, which are most likely not a one-fits-all solution,
but dependent on the research question. If the goal is investigating
different shaders within a frame, expensive oscilloscopes might be
the only solution. If one can afford averaging over time, cheaper
sensors with a lower sampling rate might be advisable. In many
cases, NVIDIA’s software sensors provide remarkably accurate data,
effectively for free. Of course, the latter is only practical when using
NVIDIA cards and restricts the approach to a very specific subset of
applications heavily relying on GPUs – mostly in scientific visuali-
sation. While there are surely information visualisation techniques
hammering the GPU [16], gaining a complete picture of the power
consumption of the growing number of browser-based applications
is not possible this way. However, an interesting development in this
context is the latest version of Firefox including a power profiler.

Tinkerforge bricklets or alike offer a solution for that by allowing
for measuring most power rails in a system individually. Com-
pared to oscilloscopes, they are also a relatively affordable solution,
costing approximately one tenth in our case. However, there are
disadvantages, e. g. the need to cut dozens of wires and then reassem-
bling them correctly. We are also not fully comfortable with the
bricklets having a current limit of 20 A, which is lower than what
our PSU can theoretically provide on some of the power rails – but
practically does not in the current setup. Furthermore, we add quite
some extra cables and clamps to the circuit, changing the resistance
of the connections. In combination with off-the-shelf riser cards, the
overall solution having a far lower entry barrier than custom printed
circuit boards as used by Johnsson et al. [23] is still a big plus.

Large series of benchmarks covering a variety of algorithms, data
sets and hardware must be automated. Fortunately, all methods we
used provide some kind of API allowing for automation, albeit differ-
ent ones in most cases (both Rohde & Schwarz instruments have an
API based on the Virtual Instrument Software Architecture (VISA),
making them at least similar). Having a unified software ecosystem
for power measurements supporting a variety of instruments is there-
fore desirable, again to lower the entry barrier and to avoid mistakes.
In this work, we hit obscure software quirks on multiple occasions,
which should be abstracted from visualisation researchers who only
want to evaluate the energy efficiency of their algorithms. Ideally,
the software ecosystem supports intrusive measurements that run
in the process of the benchmark as well as non-intrusive observa-
tions for closed-source processes. We contribute our aforementioned
library used for this research to this effort, including a hands-on
description of the hardware setup, on GitHub (cf. Sect. 4.2).

Reproducible, replicable and comparable power measurements
for visualisation algorithms, which should eventually merge into a
consistent understanding of the characteristics of the algorithms, do
not only rely on measurement setups and software frameworks, but
also on benchmarks, most importantly data sets, which have been
found to be a major influencing factor on runtime performance [8].
We admit that we chose our benchmarks based on what has been
used for evaluating runtime performance of volume and sphere ren-
dering, and for the web-based test cases, we wanted to cover basic
charts, node-link diagrams and most importantly WebGL. However,
there are arguably even more interesting cases like techniques rely-
ing on the graphics pipeline in multiple rendering passes or visual
analytics applications, which often combine the difficult information
visualisation case with calls to machine learning kernels every so
often. Furthermore, in order to form a comprehensive picture of the
energy consumption of the algorithm, we should identify relevant
properties of data sets that affect power draw and eventually resort
to generative data models that evenly cover the problem space [38].

We also need to agree on how to analyse and report power
measurements. Given the high temporal resolution of some sensors,
which accommodate the high frequency at which GPUs regulate
power, it is possible to collect enormous amounts of data, which
need to be massively condensed for publication. Johnsson et al. [23]
suggest reporting Joules per pixel as the most general way of express-
ing the resolution-independent energy efficiency. But this might not
necessarily be the best metric for visualisation where, in contrast to
most rendering applications, oftentimes not the whole screen is filled
or there is heavy overdraw – e. g. in case of volume rendering. Joules
per fragment might solve this issue at the cost of making the evalua-
tion more complex as additional statistics queries need to be issued,
wherefore Joules per frame in the style of the prevalent frames per
second or milliseconds per frame might be the most pragmatic start-
ing point. In cases where the algorithm is not clearly GPU-bound,

7

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

0 2 4 6 8
Time [s]

0

25

50

75

100

125
Po

w
er

 [W
]

ATX
CPU
GPU
NVML
Run 1
Run 2
Run 3
Run 4

0 2 4 6 8
Time [s]

0

20

40

60

80

100

Po
w

er
 [W

]

ATX
CPU
GPU
ADL
Run 1
Run 2
Run 3
Run 4

Figure 9: Instantaneous power draw of the “Dirty Planet” visualisation from Observable HQ. The “ATX” lines indicate the power measured on
all ATX power rails minus the power measured leaving via the PEG slot. The “CPU” lines indicate the power measured on the dedicated EPS
(Entry-Level Power Supply Specification) P4 and P8 power cables for the CPU. Therefore, the total CPU power consumption is the sum of “CPU”
and a fraction of “ATX”, which we unfortunately cannot measure independently. The “GPU” lines indicate the aggregated power measured on the
PEG slot and the PCIe power cables. The “NVML” and “ADL” lines indicate the power measured via the respective software sensors by NVIDIA
and AMD. The point in time when the browser indicated that the page was loaded is shown by vertical magenta lines. Three additional, lightly
coloured measurement series are provided to illustrate that the power draw might differ drastically from run to run. We assume the noticeable
steps in the NVML line being the result of internal averaging, making it a less than optimal choice for real-time observations.

reporting GPU power figures might be insufficient and we might
need to find ways to present complex, multi-level, multi-faceted
data – possibly by means of novel visualisations. For techniques
like browser-based visualisations, it might also necessary to include
whole time series of sensor data instead of blindly aggregated values.

For many of our measurements at hand, we see a fair amount
of uncertainty, mostly regarding timestamps and thus correlation
between activities and measurements. Only the ADL provides times-
tamps along with its measurements – a benefit negated by the lack
of protection against race conditions, making it impossible be sure
that the timestamp and the value stem from the same measurement.
For all other types of sensors, we record the timestamp as we receive
the sample. Additionally, we do not know the sampling rate of all
sensors. For instance, NVML seems to have new values approxi-
mately every 100 ms, but timings vary. Similarly, we do not receive
samples from the Tinkerforge bricklets at a rate as consistent as we
wished for, hinting that we are close to some bandwidth bottleneck,
be it USB or the internal bus between bricks and bricklets. Finally,
running measurement code in process requires – even if not much –
energy, which we currently do not account for. All of these issues
should ideally be resolved over time by improving measurement
methods – or at least considered when reporting results.

Once having the problems of empirically evaluating the energy
consumption of visualisation algorithms sorted out, we should move
to building theoretical models as the long-term goal. In the GPGPU
and HPC context, it has been established that GPU performance
counters and assembly instructions are viable options for building
predictive models for estimating power consumption instead of mea-
suring it. While the hardware counters representing the utilisation of
the GPU are surely a promising option for our field as well, we might
also include graphics pipeline statistics in such models and replace
CUDA PTX by DXIL and SPIR-V shader assembly languages.

Having theoretical models will also help in finding guidelines on
the right measurement technique for every visualisation tech-
nique. We see evidence in our experiment that high-resolution
time series of multiple sensors are required for web-based methods,
whereas uniform GPU-heavy workloads can be described by aver-
aging measurements. Sometimes, it might be sufficient to measure
the system as a whole and combine these numbers with hardware
counters and models to obtain an acceptable prediction of the energy
consumption – or even to rely solely on the models.

Raising the bar for what to expect from evaluation of visuali-
sation might not be welcome for everyone. We therefore suggest
establishing an incentive structure alike to what we do for research

data in the form of paper badges. We also hope for the discretion
of reviewers pushing the topic if and only if it is appropriate as we
clearly see that measuring power might not be appropriate for all
research. For instance, given our current approach, we are dubious
about using it on highly interactive applications with quickly varying,
non-repetitive computational demands. We are convinced that for
the sake of a responsible use of resources, we should work towards
an understanding of the energy consumption of our work, but we
do not believe overly stringent regulations strangling creativity and
exploration being advantageous for any field of research.

7 CONCLUSION AND FUTURE WORK

We made the case that the visualisation community should look
into the energy consumption of their algorithms and showed that
nowadays, it is possible for everyone with basic knowledge about
electrical systems and computers to build a measurement setup
that allows for looking into individual power rails. In some cases,
software-based sensors are a built-in option for measuring energy
consumption with an extremely low barrier of entry and surprisingly
accurate results, but with moderate temporal resolution. In our
opinion, with this sensor available, there is no reason not to include
such measurements along with the commonly reported frame times
if a frame can be repeatedly rendered over some time. We reported
results of a small measurement series for GPU-based and web-
based visualisations and laid out the challenges related to such an
endeavour based on our experiences in the experiment.

Obviously, our exemplary measurement series is not more than
a first step on the way to understanding the power consumption
of visualisation and we see a variety of future research directions:
We should strive to build a reliable, easy-to-use software layer for
evaluation, identify the data that are representative for characterising
energy consumption of algorithms and simply perform and share
a lot of measurements. Based on these, we see the opportunity to
build models for power prediction as it has been done in the HPC
area before. Furthermore, an increased awareness for power con-
sumption of visualisation algorithms might also lead into developing
power-efficient algorithms as a new area of research, again following
examples from the HPC and graphics communities.

ACKNOWLEDGMENTS

This work was partially funded by Deutsche Forschungsgemein-
schaft (DFG) as part of SFB/Transregio 161 (project ID 251654672).
The authors want to thank Tobias Rau for his assistance while 3D-
printing parts for this work.

8

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

REFERENCES

[1] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato.
Power and performance analysis of GPU-accelerated systems. In Proc.
Workshop Power-Aware Comput. Syst., 2012.

[2] X. Amberger. Unleashed unicorn on a flight of fancy – shunt-mod for
NVIDIA GeForce RTX 3090 FE and the Alphacool Eisblock GPX-N,
2021. Online: https://www.igorslab.de/en/unleashed-

unicorn-spreads-his-wings-from-shunt-modding-nvidia-

rtx-3090-founders-edition/, last accessed 2022/06/30.
[3] AMD. AMD Display Library (ADL) SDK. Online: https://
gpuopen.com/adl/, last accessed 2022/06/30.

[4] A. S. G. Andrae and T. Edler. On global electricity usage of communi-
cation technology: trends to 2030. Challenges, 6(1):117–157, 2015.
doi: 10.3390/challe6010117

[5] Y. Arafa, A. ElWazir, A. ElKanishy, Y. Aly, A. Elsayed, A.-H. Badawy,
G. Chennupati, S. Eidenbenz, and N. Santhi. Verified instruction-
level energy consumption measurement for NVIDIA GPUs. In Proc.
Int’l Conf. Comput. Front., pp. 60–70, 2020. doi: 10.1145/3387902.
3392613

[6] S. Borkar and A. A. Chien. The future of microprocessors. Commun.
ACM, 54(5):67–77, 2011. doi: 10.1145/1941487.1941507

[7] R. A. Bridges, N. Imam, and T. M. Mintz. Understanding GPU power:
a survey of profiling, modeling, and simulation methods. ACM Comput.
Surv., 49(3), 2016. doi: 10.1145/2962131

[8] V. Bruder, C. Müller, S. Frey, and T. Ertl. On evaluating runtime
performance of interactive visualizations. IEEE Trans. Vis. Comput.
Graph., 26(9):2848–2862, 2020. doi: 10.1109/TVCG.2019.2898435

[9] M. Burtscher, I. Zecena, and Z. Zong. Measuring GPU power with the
K20 built-in sensor. In Proc. Workshop Gen. Purp. Proc. GPUs, pp.
28–36, 2014. doi: 10.1145/2588768.2576783

[10] J. Chuang, D. Weiskopf, and T. Möller. Energy aware color sets.
Comput. Graph. Forum, 28(2):203–211, 2009. doi: 10.1111/j.1467
-8659.2009.01359.x

[11] C. Collange, D. Defour, and A. Tisserand. Power consumption of
GPUs from a software perspective. In Proc. Int’l Conf. Comput. Sci.,
pp. 914–923, 2009.

[12] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky. A
comparative study of methods for measurement of energy of computing.
Energies, 12(11), 2019. doi: 10.3390/en12112204

[13] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. Megamol—a
prototyping framework for particle-based visualization. IEEE Trans.
Vis. Comput. Graph., 21(2):201–214, 2015. doi: 10.1109/TVCG.2014.
2350479

[14] S. Gumhold. Splatting illuminated ellipsoids with depth correction. In
Proc. Symp. Vision, Model., Vis., pp. 245–252, 2003.

[15] M. Heinemann, V. Bruder, S. Frey, and T. Ertl. Power efficiency of
volume raycasting on mobile devices. In EuroVis 2017 – Posters, 2017.
doi: 10.2312/eurp.20171166

[16] J. Heinrich and D. Weiskopf. Continuous parallel coordinates. IEEE
Trans. Vis. Comput. Graph., 15(6):1531–1538, 2009. doi: 10.1109/
TVCG.2009.131

[17] T. G. Holmes. Eco-visualization: combining art and technology to
reduce energy consumption. In Proc. Conf. Creat. & Cogn., pp. 153–
162, 2007. doi: 10.1145/1254960.1254982

[18] S. Hong and H. Kim. An integrated GPU power and performance
model. In Proc. Int’l Symp. Comput. Arch., pp. 280–289, 2010. doi: 10
.1145/1815961.1815998

[19] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang. Characterization and
prediction of deep learning workloads in large-scale GPU datacenters.
In Proc. Int’l Conf. High Perf. Comput., Netw., Stor., Anal., 2021. doi:
10.1145/3458817.3476223

[20] IEA. Data centres and data transmission networks, 2021.
https://www.iea.org/reports/data-centres-and-data-

transmission-networks.
[21] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong. GPU-NEST: char-

acterizing energy efficiency of multi-GPU inference servers. IEEE
Comput. Archit. L., 19(2):139–142, 2020. doi: 10.1109/LCA.2020.
3023723

[22] B. Johnsson and T. Akenine-Möller. Measuring per-frame energy

consumption of real-time graphics applications. J. Comput. Graph.
Tech., 3(1), 2014.

[23] B. Johnsson, P. Ganestam, M. Doggett, and T. Akenine-Möller. Power
Efficiency for Software Algorithms Running on Graphics Processors.
In Proc. Symp. High Perf. Graph., 2012. doi: 10.2312/EGGH/HPG12/
067-075

[24] N. Jones. The information factories. Nature, (561):163–166, 2018. doi:
10.1038/d41586-018-06610-y

[25] J. Krüger and R. Westermann. Acceleration techniques for GPU-based
volume rendering. In Proc. Vis., pp. 287–292, 2003. doi: 10.1109/
VISUAL.2003.1250384

[26] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and
W. Sung. Power modeling for GPU architectures using McPAT. ACM
Trans. Des. Autom. Electron. Syst., 19(3), 2014. doi: 10.1145/2611758

[27] C. Luo and R. Suda. A performance and energy consumption analytical
model for GPU. In Proc. Conf. Depend., Auton., Secure Comput., pp.
658–665, 2011. doi: 10.1109/DASC.2011.117

[28] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical power con-
sumption analysis and modeling for GPU-based computing. In Proc.
Workshop Power-Aware Comput. Syst., 2009.

[29] X. Mei, L. S. Yung, K. Zhao, and X. Chu. A measurement study of
GPU DVFS on energy conservation. In Proc. Workshop Power-Aware
Comput. Syst., 2013. doi: 10.1145/2525526.2525852

[30] S. Mittal and J. S. Vetter. A survey of methods for analyzing and
improving GPU energy efficiency. ACM Comput. Surv., 47(2), 2014.
doi: 10.1145/2636342

[31] C. Müller, M. Heinemann, D. Weiskopf, and T. Ertl. Energy consump-
tion of scientific visualisation and data visualisation algorithms, 2022.
Data set. doi: 10.18419/darus-3044

[32] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka.
Statistical power modeling of GPU kernels using performance counters.
In Proc. Int’l Conf. Green Comput., pp. 115–122, 2010. doi: 10.1109/
GREENCOMP.2010.5598315

[33] NVIDIA. NVIDIA Management Library (NVML). On-
line: https://developer.nvidia.com/nvidia-management-

library-nvml, last accessed 2022/06/30.
[34] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H.

Jones. Comparing energy efficiency of CPU, GPU and FPGA imple-
mentations for vision kernels. In Proc. Int’l Conf. Embed. Softw. Syst.,
pp. 1–8, 2019. doi: 10.1109/ICESS.2019.8782524

[35] K. Ramani, A. Ibrahim, and D. Shimizu. Powerred: a flexible mod-
eling framework for power efficiency exploration in GPUs. In Proc.
Workshop Gen. Purp. Proc. GPUs, vol. 7, 2007.

[36] E. Ramsden. Hall-Effect Sensors. Newnes, Oxford, 2006.
[37] S. Schneider. NVIDIA reviewer toolkit for graphics performance,

2020. Online: https://www.nvidia.com/en-us/geforce/news/
nvidia-reviewer-toolkit/, last accessed: 2022/06/30.

[38] C. Schulz, A. Nocaj, M. El-Assady, S. Frey, M. Hlawatsch, M. Hund,
G. Karch, R. Netzel, C. Schätzle, M. Butt, D. A. Keim, T. Ertl, U. Bran-
des, and D. Weiskopf. Generative data models for validation and
evaluation of visualization techniques. In Proc. Workshop Beyond Time
and Errors on Novel Eval. Meth. for Vis., pp. 112–124, 2016. doi: 10.
1145/2993901.2993907

[39] J. W. Sheaffer, D. Luebke, and K. Skadron. A flexible simulation
framework for graphics architectures. In Proc. Conf. Graph. Hardw.,
pp. 85–94, 2004. doi: 10.1145/1058129.1058142

[40] I. Wallossek. Read out graphics cards power consumption via
software instead of costly measurement? easy with a NVIDIA
GeForce and almost impossible with an AMD Radeon, 2022. Online:
https://www.igorslab.de/en/graphics-cards-and-their-

consumption-read-out-rather-than-measured-why-this-

is-easy-with-nvidia-and-nearly-impossible-with-amd/,
last accessed 2022/06/30.

[41] R. Wang, B. Yu, J. Marco, T. Hu, D. Gutierrez, and H. Bao. Real-time
rendering on a power budget. ACM Trans. Graph., 35(4):111:1–111:11,
2016. doi: 10.1145/2897824.2925889

[42] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore. Measuring energy and power with PAPI.
In Proc. Int’l Conf. Par. Proc. Workshops, pp. 262–268, 2012. doi: 10.
1109/ICPPW.2012.39

9

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://www.igorslab.de/en/unleashed-unicorn-spreads-his-wings-from-shunt-modding-nvidia-rtx-3090-founders-edition/
https://www.igorslab.de/en/unleashed-unicorn-spreads-his-wings-from-shunt-modding-nvidia-rtx-3090-founders-edition/
https://www.igorslab.de/en/unleashed-unicorn-spreads-his-wings-from-shunt-modding-nvidia-rtx-3090-founders-edition/
https://gpuopen.com/adl/
https://gpuopen.com/adl/
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.nvidia.com/en-us/geforce/news/nvidia-reviewer-toolkit/
https://www.nvidia.com/en-us/geforce/news/nvidia-reviewer-toolkit/
https://www.igorslab.de/en/graphics-cards-and-their-consumption-read-out-rather-than-measured-why-this-is-easy-with-nvidia-and-nearly-impossible-with-amd/
https://www.igorslab.de/en/graphics-cards-and-their-consumption-read-out-rather-than-measured-why-this-is-easy-with-nvidia-and-nearly-impossible-with-amd/
https://www.igorslab.de/en/graphics-cards-and-their-consumption-read-out-rather-than-measured-why-this-is-easy-with-nvidia-and-nearly-impossible-with-amd/

	Introduction
	Background on measuring power consumption
	GPU management libraries
	External power meters
	Intrusive measuring methods
	Oscilloscopes

	Related work
	Experimental setup
	Hardware
	Software

	Experiment
	Test cases
	Results

	Recommendations and challenges
	Conclusion and future work

