
Posture Sleeve: Using Smart Textiles
for Public Display Interactions

Alexandra Voit
VIS, University of Stuttgart
alexandra.voit@vis.uni-
stuttgart.de

Stefan Schneegass
paluno - The Ruhr Institute for
Software Technology
University of Duisburg-Essen
stefan.schneegass@uni-due.de

Ferdinand Pfähler
VIS, University of Stuttgart
st101977@stud.uni-stuttgart.de

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

CHI’18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada.
© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5621-3/18/04.
https://doi.org/10.1145/3170427.3188687

Abstract
Today, public displays are used to display general purpose
information or advertisements in many public and urban
spaces. In addition to that, research identified novel appli-
cation scenarios for public displays. These scenarios, how-
ever, mainly include gesture- and posture-based interaction
mainly relying on optical tracking. Deploying optical track-
ing systems in the real world is not always possible since
real-world deployments have to tackle several challenges.
These challenges include changing light conditions or pri-
vacy concerns. In this paper, we explore how smart fabric
can detect the user’s posture. We particularly focus on the
user’s arm posture and how this can be used for interact-
ing with public displays. We conduct a preliminary study to
record different arm postures, create a model to detect arm
postures. Finally, we conduct an evaluation study using a
simple game that uses the arm posture as input. We show
that smart textiles are suitable to detect arm postures and
feasible for this type of application scenarios.
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Introduction and Background
Public displays have become common in urban landscapes.
While they are currently used to display either general infor-
mation or advertisement, research has identified interesting
application scenarios for such displays. Most of these ap-
plication scenarios require some form of interaction which
in many cases is an optical tracking system such as the Mi-
crosoft Kinect [7, 8]. Gesture and posture interactions show
several advantages compared to other forms of input. While
they are easily implementable in a lab setting, real-world
deployments face several challenges such as bad lighting
conditions or privacy concerns through the camera in public
space. In contrast to optical tracking systems, wearables
have been shown to be capable of providing similar infor-
mation on the user’s posture and body movements [4, 5].
In this work, we explore how smart textiles can be used to
interact with a public display. We used a touch-sensitive
sleeve that detects the angle of the user’s arm. We report
on a preliminary study that is used to record different arm
postures and develop a model of the arm posture based on
the recorded data. We also report on an evaluation using a
simple game that uses the user’s arm posture as input.

Posture Sleeve
Resistive fabrics have been used to measure several differ-
ent inputs of the user ranging from explicit gesture input [6]
to implicit movement while exercising [10]. In this work, we
explore how the arm posture of the user can be detected
with a smart fabric and can be used as input.

Figure 1: Used touch-sensitive
fabric and used processing board
(top left).

Resistive Sleeve
We use a resistive, touch-sensitive fabric that is similar to
smart fabric developed by Zhou et al. [9]. The smart fabric
itself consists of three layers. On the inner sides of both
outside layers, groups of 32 parallel conductive stripes
(width of the stripes: 3mm; distances between the stripes:

2mm) are attached to the fabric (see Figure 1). Both out-
side layers are placed perpendicular to each other. A force
sensitive fabric is placed between the outside layers. This
fabric changes resistance based on the applied vertical
pressure. Thus, each crossing of two conductive stripes
acts as a resistive sensor and can individually be accessed.

The smart fabric has a size of 16 × 16 cm and contains
1024 individual pressure sensors (i.e., 32 by 32 overlaps of
the conductive stripes). A small processing board is con-
nected via cables with the smart fabric (cf. Figure 1, – top
left). The processing board has a sampling rate of 50 Hz
and forwards the sensed information in real time by a wired
and wireless connection.

Exploring Arm Posture
We conducted a preliminary study to record different arm
postures, namely, the angle of the elbow joint. We recorded
the data from the smart sleeve as well as the angle and cre-
ated a model mapping different pressure values to specific
angles of the elbow joint.

Apparatus
For the data collection, we used the smart sleeve as well
as an OptiTrack system (consisting of 14 Flex 3 cameras
with a sampling rate of 100 Hz, and a desktop computer
to operate the OptiTrack software). To record the arm pos-
ture, we attached in total three OptiTrack rigid bodies with
three markers each onto the participant’s arm. The first
rigid body was placed on the shoulder, the second rigid
body was placed at the outer part of the elbow joint, and
the last rigid body was placed at the wrist. Therefore, we
are capable of establishing a baseline of the angle of the
elbow joint. Figure 2 displays the smart sleeve and the rigid
bodies placed at the participant’s arm.
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Participants & Procedure
We invited ten participants (four female, six male) to the
user study. Our participants were aged between 19 and 26
years (M = 22.30, SD = 1.95).

After arriving at the lab, participants first signed an informed
consent form and filled out a demographic questionnaire.
Afterwards, we placed the smart sleeve on the partici-
pants’ arm to measure the angle of the elbow joint. Also,
we placed three rigid bodies on the participants’ arms. In
the study, we asked the participants to execute four differ-
ent activities twice. Once with the sensing fabric placed on
the inside of the arm and once with the fabric placed on the
outside of the arm. We counterbalanced the fabric position
to avoid sequence effects. First, we asked our participants
to bend and stretch their arms to measure the minimum
and maximum angles of their elbow joints. Afterwards, we
asked the participants to execute gestures of three every-
day activities. We used the activities to get more realistic
movements that might occur during everyday interactions.
The first activity was to pick up a glass from a table and to
drink a sip. For the second activity, we asked the partici-
pants to move their smartphone from their trouser pockets
and to their ears and back to the trouser pockets to simu-
late answering a call. Third, we simulated the motions of
executing a dumbbell training. During the execution of all
gestures, we recorded data sets of the smart sleeve with a
frame rate of 50 Hz as well as the positions of the OptiTrack
markers with a frame rate of 100 Hz.

Figure 2: Participant during the
data collection pre-study equipped
with the posture sleeve and three
rigid body markers placed at the
arm.

Data Analysis
In a first preprocessing step, we mapped the recordings
from the smart sleeve as well as the OptiTrack system.
The sampling rates of the OptiTrack system and the smart
sleeve (OptiTrack 100 Hz, Smart sleeve 50 Hz) differ. Thus,

we used two data recordings of the OptiTrack and calcu-
lated the arithmetic mean.

Then, we calculated the vectors between the shoulder and
the elbow joint as well as the vector between the elbow joint
and the wrist using the OptiTrack data. We used these vec-
tors to calculated the angle of the participants’ elbow joints.
For the recorded data from the smart sleeve, we first re-
duced the noise in the data by including a threshold defin-
ing a minimum pressure value counting as an intended in-
put. Additionally, we ignore all sensor values exceeding the
threshold which do not have at least three neighbors that
also exceed the threshold. This prevents that folds in the
sleeve influence the recorded data.

For the development of a model to determine the angle of
the arm, we investigated three different feature sets. As
first feature set, we used a set of statistical features (aver-
age value, standard deviation, the sum of all sensor values,
amount of sensors that exceed the threshold for intended
touch interactions, maximum sensor value, and the min-
imum sensor value). As second feature set, we used the
same statistical features that we used in the first set but
z-transformed them. For the last feature set, we used the
Haralick features of the sensors data [3]. Haralick features
analyze the characteristics of textures by investigating the
spatial distribution of the data.

Then, we analyzed all three feature sets for both place-
ments of the smart sleeve (i.e., inner and outer side of
the participants’ arms) using a 10-fold cross-validation ap-
proach using the Random Forest algorithm as the classifier.
The results of all the cross-validations are displayed in Ta-
ble 1. The best classification rate with 95.54% (MAE =
8.28) was reached using the Haralick features recorded at
the inner side of the elbow joint.
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Feature set Elbow’s inner side Elbow’s outer side

Features 1 93.70 % 90.17 %
(statistical) (MAE: 9.84°) (MAE: 12.85°)

Features 2 90.90 % 85.86 %
(z-transformed) (MAE: 12.90°) (MAE: 16.93°)

Features 3 95.54 % 93.23 %
(Haralick) (MAE: 8.28°) (MAE: 10.74°)

Table 1: Classification rates resulting from the cross-validations
according to the feature sets and the positions of the smart sleeve.

Based on the results of the classification, we decided to use
the sensor data that was recorded at the inner side of the
elbow joint with the Haralick feature set for the creation of
our model for the arm posture detection.

Figure 3: In the game "‘Flying
Saucer Attack"’ the user has to
defend the red planet in the middle
against attacking blue UFOs. The
game uses the user’s arm posture
to control the direction of the rocket
(and the missile(s)) in the middle of
the red planet. When a missile hits
a UFO the UFO is destroyed, and
the planet is saved.

Figure 4: Participant playing the
game in the evaluation study.

Evaluation Study
To evaluate our created model for the arm posture detec-
tion, we conducted a study in which the participants played
a simple game. The game used the detected angle of the
arm in real time as input.

Apparatus
We implemented the game "‘Flying Saucer Attack"’ that
is controlled by the angle of the user’s elbow joint. In the
game, the user has to defend a small red planet against
unidentified flying objects (UFOs) controlled by aliens.
The red planet is located in the center of the bottom of the
screen (cf. Figure 3). Every 1.5 seconds appears a new
UFO at the top of the screen at a randomly determined
angle to the planet from 60° to 160° in steps of 5° (in total
N = 21 angles). All UFOs attack the planet by moving
towards the planet with a speed of 70 pixels/second. To
defend the planet against the UFOs, the user controls the
angle of a gun that activates a new missile every 300 ms
automatically with the arm. The angle of a new activated

missile corresponds the angle of the user’s elbow joint.
Here, a stretched elbow joint corresponds to a gun orien-
tated to the right. If a missile collides with a UFO, the UFO
and the missile are destroyed. If a UFO reaches the planet,
the game counts how many UFOs attacked the planet suc-
cessfully, and logs the angle of the approaching UFO. In the
game, the planet was attacked three times from all possible
angles (i.e., 63 attacking UFOs). The game terminated au-
tomatically after the last UFO was destroyed or attacked the
planet sucessfully. For the game, we used similar artwork
as in the work of Alt et al. [1].

Participants & Procedure
In total, ten participants (two female, eight male) took part
in our study. The participants were aged between 14 and
42 years (M = 24.40, SD = 7.81). All participants except
one participant had not participated in the preliminary study.
Further, all participants had no physical constraints on the
movements of their elbow joints.

After the participants arrived in our lab, they signed a con-
sent form and answered our demographic questionnaire.
Then, we placed the fabric on the inner side of the partic-
ipant’s elbow joint. To avoid carry-over effects while play-
ing the game, our participants played a trial round with the
game, to get familiar with the interaction modality. After-
wards, the participants played a second round where we
recorded the interactions.

Results
In total, 99.98 % of UFOs (SD = 0.02 %) were destroyed
by the participants before they could attack the planet suc-
cessfully. The lifetime of a destroyed UFO was between
0.01 sec and 14.19 sec (M = 4.47 sec, SD = 2.94 sec).
The mean lifetimes of the UFOs according to their approach-
ing angles are displayed in Figure 5. Also, from zero to five
UFOs (M = 1.10, SD = 1.52) attacked the planet suc-
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Figure 5: Mean lifetime of UFOs according to their angles.

cessfully per participant. The approaching angles of the not
destroyed UFOs are displayed in Figure 6.

Discussion and Limitations
The results of our evaluation study show that smart textiles
integrated into a sleeve are suitable to detect the user’s arm
postures. In the conducted evaluation study we used the
arm posture to interact with a simple game that could be
displayed on public displays in the future.

However, if a smart sleeve is deliberately developed to sup-
port one purpose, e.g., to detect the arm postures for in-
teractions with public displays, most users might not be
convinced to buy such a textile. To provide real value to
the end-user, a smart sleeve has to support several appli-
cations. Therefore, the hardware and software of a smart
sleeve need to be decoupled to allow several applications
using the textile for their own purposes [2]. For example,
the smart sleeve could support activity recognition, e.g., for
tracking sports activities. Thus, an end-user who is inter-
ested in tracking sports activities could customize the smart
sleeve to track his dumbbell training to count repetitions or
to avoid overstretching the muscles.

Figure 6: Surviving UFOs according to their angles.

In both conducted studies, we placed the smart sleeve us-
ing an elbow brace tight to the user’s arm. In a real-world
scenario, the users will wear the smart sleeve without an el-
bow brace. Thus, the textile might get wrinkled which could
reduce the detection accuracy.

Conclusion
In this paper, we explored the use of smart textiles for the
interaction with public displays. We used a resistive smart
textile to detect the user’s arm posture by the angle of the
elbow joint. We conducted a preliminary study to record
different arm postures and a baseline using a motion cap-
turing system. Furthermore, we developed a model of the
arm posture based on the recorded data. We implemented
a simple game that uses the user’s arm posture as input.
Finally, we showed that smart textiles are suitable to detect
arm postures and feasible for this type of application sce-
narios that use the user’s arm posture as input.
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