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Light �elds are a powerful concept in computational imaging and a mainstay
in image-based rendering; however, so far their acquisition required either
carefully designed and calibrated optical systems (micro-lens arrays), or
multi-camera/multi-shot settings. Here, we show that fully calibrated light
�eld data can be obtained from a single ordinary photograph taken through
a partially wetted window. Each drop of water produces a distorted view on
the scene, and the challenge of recovering the unknown mapping from pixel
coordinates to refracted rays in space is a severely underconstrained problem.
The key idea behind our solution is to combine ray tracing and low-level
image analysis techniques (extraction of 2D drop contours and locations
of scene features seen through drops) with state-of-the-art drop shape sim-
ulation and an iterative re�nement scheme to enforce photo-consistency
across features that are seen in multiple views. This novel approach not
only recovers a dense pixel-to-ray mapping, but also the refractive geometry
through which the scene is observed, to high accuracy. We therefore antici-
pate that our inherently self-calibrating scheme might also �nd applications
in other �elds, for instance in materials science where the wetting properties
of liquids on surfaces are investigated.

CCS Concepts: • Computing methodologies → Computational pho-
tography; 3D imaging; Reconstruction; Physical simulation;

Additional Key Words and Phrases: Plenoptic imaging, inverse rendering,
analysis by synthesis

ACM Reference format:
Julian Iseringhausen, Bastian Goldlücke, Nina Pesheva, Stanimir Iliev, Alexan-
der Wender, Martin Fuchs, and Matthias B. Hullin. 2017. 4D Imaging through
Spray-On Optics. ACM Trans. Graph. 36, 4, Article 35 (July 2017), 11 pages.
DOI: http://dx.doi.org/10.1145/3072959.3073589

1 INTRODUCTION
Light �elds [Gortler et al. 1996; Levoy and Hanrahan 1996] describe
light leaving a scene on a ray-by-ray basis. They do not only form
the foundation of image-based rendering, but have also been shown
to facilitate the solution of long-standing vision problems such as
depth estimation. For the capture of light �elds, few commercial
solutions are available; to this day, 2D imagers by far dominate
the market. The de�ning component of a light �eld imager is an
optical and/or mechanical system that maps the 4D space of rays
onto the 2D sensor plane. Most such systems are carefully designed
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to trade between spatial and angular resolution, and to achieve op-
timal overall imaging performance by maximizing light e�ciency
and sharpness while avoiding cross-talk and aliasing, all under the
given design constraints. On the other end of the scale are “casual”
or “random” light �eld cameras that use every-day re�ective or
refractive objects [Wender et al. 2015] or randomized optical ele-
ments [Antipa et al. 2016; Fergus et al. 2006]. They replace careful
optical design by exhaustive calibration of the pixel-to-ray mapping.
Here, we take this idea of exploiting low-end optical devices for
integral imaging a signi�cant step further. By focusing on a par-
ticular, but very common, optical scenario (a window wetted by
water drops), we can make extensive use of domain knowledge and
physical simulation to greatly facilitate the calibration process. The
result is a heterogeneous pipeline that comprises low-level image
analysis steps for drop segmentation and feature detection, drop
shape simulation to recover the refractive geometry, and a custom
bundle adjustment scheme to re�ne the estimated geometry. With
that, our work for the �rst time enables both the calibration of a
dense pixel-to-ray mapping and the acquisition of a light �eld from
a single input image taken through a wetted window.

We consider the following to be our key contributions:
• We propose the use of physical simulation to facilitate the calibra-

tion of a-priori unknown imaging systems; in particular, liquid
drops as optics for light �eld imaging.

• We introduce a pipeline for ray-space calibration and the extrac-
tion of light �eld data from a single input image. It combines
simple image analysis steps with drop shape simulation, an algo-
rithm for matching and re�nement of 2D features, and a custom
bundle adjustment scheme to jointly estimate a cloud of sparse
3D features and re�ne the estimated drop geometry.

• We experimentally validate our pipeline on a selection of static
and dynamic scenes.

• Finally, for lack of experimental ground truth data, we evaluate
the accuracy of our ray-space calibration and the recovered 3D
water drop geometries using synthetic experiments.

2 RELATED WORK
Before we explain our method in detail, we will start by discussing
existing works that served as a source of inspiration for our work.

Liquid mirrors and lenses. Liquids have been used for optical pur-
poses throughout history, but it was not until the late 19th century
that a rapid technical developments and deeper physical under-
standing enabled astronomers to construct mirror telescopes from
liquid mercury, a technology that is still in use today [Hickson
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Fig. 1. Using liquids to image light fields (“Animals” example). (a), Our capture se�ing: the scene is observed by a 2D camera (not in illustration) through a
we�ed window. Light rays falling through water drops are refracted and sample the scene’s light field. (b), Our input is a single image of the scene, as seen by
the primary camera. Using drop shape simulation, we establish tentative pixel-to-ray mappings that allow to undistort the individual drop views (c) and, a�er
further refinement, to render a weighted focal stack (d).

et al. 1998]. In technical optics, today’s possibilities include vari-
able lenses controlled e.g. by micro�uidic channels [Chronis et al.
2003] or electrowetting [Kuiper and Hendriks 2004], and the fabrica-
tion of microlens arrays from photoresist through re�ow processes
[O’Neill and Sheridan 2002]. The computer graphics community
has discovered water not only as a natural phenomenon worthy of
digital simulation, but also as a display medium [Barnum et al. 2010;
Hullin et al. 2011]. Just as we propose in this paper, in these works
liquids were exposed to weakly controlled conditions, letting them
assume a-priori unknown free-form shapes. Only very recently have
researchers succeeded in using such settings for multi-view recon-
struction [You et al. 2016]; to our knowledge, our work is the �rst
to perform a full ray-space calibration from a single image taken
through water drops.

Light �elds. The research history on light �elds, while signi�-
cantly shorter, is nevertheless very rich and diverse [Ihrke et al.
2011]. In this section, we brie�y review publications that are the
most relevant to our work. They can serve as a starting point for a
deeper exploration of the �eld.

The idea of capturing ray-space radiance measurements can be
traced back to Lippmann [1908]. Yet, it was not until the com-
puter age that light �eld data could be used to synthesize novel
images [Gortler et al. 1996; Levoy and Hanrahan 1996], paving the
way for a widespread adoption in the graphics and vision communi-
ties. Light �elds are not only a mainstay of image-based rendering,
but have also proven a valuable tool in a wide range of applications,
including post-capture refocusing and parallax [Levoy et al. 2006;
Ng 2005], depth estimation [Kim et al. 2013; Tao et al. 2013; Wang
et al. 2016; Wanner and Goldlücke 2014], as well as for advanced
�ltering purposes like glare removal [Raskar et al. 2008].

Much theoretical work has been done on light �elds, most of it
relating back to Adelson and Bergen’s de�nition of the plenoptic
function [1991]. Milestones in light �eld analysis include the de-
velopment of a sampling framework for image-based rendering by
Chai et al. [2000], Ng’s Fourier slice theorem [2005] that identi�es
2D images with 4D slices of the light �eld in Fourier domain and
Wetzstein et al.’s theory [2013] that uni�es the multiplexing of light
�elds with other plenoptic dimensions. Motivated by practical chal-
lenges in the construction of light �eld imagers, Wei et al. [2015]
proposed a uni�ed sampling framework that takes into account lens
aberrations and misalignment.
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Fig. 2. Illustrations of the imaging pipeline and the underlying ray geometry at di�erent stages. (a), Flow diagram of the reconstruction scheme, which
combines a strong physical model (drop shape simulation) with computer vision elements such as image segmentation, feature detection and matching, and
bundle adjustment. (b), Until the drop parameter is uniquely determined, each image location (primary ray) corresponds not to a single secondary ray but a
fan of rays. (c), Secondary rays from di�erent drops that have been identified to belong to the same scene-space feature (here illustrated by the red and green
ray bundles) should intersect as closely as possible. We express this constraint in a cost function (Eq. 2) that sums up, for each feature f , the mutual line-line
distances over all pairs of secondary rays belonging to that feature under the given drop volume parameters.

Since light �elds in their most common de�nition are a four-
dimensional representation of ray space, their capture poses nu-
merous practical challenges as well. Among the setups proposed
are robotic gantries [Levoy and Hanrahan 1996], camera arrays
[Wilburn et al. 2005], as well as multiplexing optics like lenslet ar-
rays [Georgiev et al. 2006; Ng 2005], amplitude masks [Veeraragha-
van et al. 2007], elaborate mirror arrangements [Fuchs et al. 2013;
Mukaigawa et al. 2011; Taguchi et al. 2010], kaleidoscopes [Han and
Perlin 2003; Manakov et al. 2013], random elements [Antipa et al.
2016; Fergus et al. 2006] and even household items [Wender et al.
2015]. We note that calibrating an unknown integral imager’s ray
geometry is closely linked to capturing the geometry of re�ective
and transparent objects [Ihrke et al. 2008]. Here, most of literature
deals with extensions to structured light scanning [Hullin et al. 2008;
Tarini et al. 2005; Weinmann et al. 2013]. Kutulakos and Steger in-
vestigated the conditions and constraints under which re�ective
and refractive geometry can be recovered [2008]. In our approach,
we constrain ourselves to optical surfaces that follow well-explored
physical laws. We integrate this knowledge to estimate the shape
of our refractive surface, and hence the geometry of viewing rays,
using physical simulation.

Finally, on a higher level, we draw a great deal of inspiration from
works on lightweight or free-hand capture techniques, recently
culminating in Torralba and Freeman’s explorative paper on acci-
dental cameras [2014]. From the �rst days of light �eld acquisition,
researchers have aimed to avoid high-precision robotic and opto-
mechanical designs, instead augmenting the available hardware by
appropriate calibration steps [Davis et al. 2012; Gortler et al. 1996].
By replacing optical design with calibration, and calibration with
simulation, our work continues in this tradition.

3 EXPERIMENTAL SETUP AND PROCEDURE
In this section, we describe the experimental setup used to capture
light �elds through water drops.

Parts. Our camera was a Canon EOS 5D Mark II with the 24-
105 mm f/4 kit lens set to a �xed 105 mm focal length and f/22
aperture. As substrate for our drops, we used 2 mm thick acrylic
(PMMA) sheets. The liquid was tap water. Our model can account for
slight changes in refractive index or surface energies by adjusting

the drop volume parameter (see Section 4.1). Four di�used 50 W
LED area lights served as the light source.

Setup. An illustration of our setup can be found in Fig. 1a. Using
a checkerboard target at various distances and the Camera Cali-
bration Toolbox for MATLAB [Bouguet 2004], we calibrated the
intrinsic camera parameters to obtain a pixel-to-ray mapping. The
camera was then mounted on a tripod and faced down approxi-
mately vertically, which we con�rmed by placing a small spirit level
on the camera’s rear display. The tripod mounting point was located
approximately 100 cm above the �oor. To obtain stationary drops
(a requirement for simulation), we mounted the acrylic sheet hori-
zontally at an approximate distance of 50 cm (measured with tape)
below the camera’s tripod mounting point, and focused the lens to
its surface. The LED lights were mounted immediately underneath
the window, facing downward onto the scene. Although our method
works in ambient light, re�ections in the drop surfaces had to be
avoided since they interfere with the drop segmentation and distort
the measured light �eld. Our coordinate system is oriented such
that the X and Y axes lie in the plane of the window, with the Z
axis pointing toward the camera. The pixel-per-millimeter scale
in the drop plane was obtained by combining the intrinsic camera
calibration and the known distance of the substrate.

Capturing procedure. To capture a light �eld, we �rst arranged the
scene and ensured that it was well lit. We then used a spray bottle
to apply water drops to the acrylic surface. The drops typically take
a few seconds to assume their �nal shape, a process that can be
accelerated by gently tapping on the substrate. We triggered image
exposure using a remote control. For the CarStunt scene, we used
a microcontroller to simultaneously release four toy cars using a
solenoid mechanism, and to time the camera exposure. The resulting
raw images were converted to 16-bit PNG format using the Camera
Raw importer in Adobe Photoshop CS5. Example input images can
be seen in Fig. 1b and 3a.

4 RECONSTRUCTION PIPELINE
The input to our reconstruction pipeline consists of a single image,
like the one shown in Fig. 1b, as well as a small number of additional
parameters like camera projection, the distance of the window and
the physical properties of the materials involved (density, refractive
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Fig. 3. Segmentation of drops in an image, and simulation of their shape.
(a), Input image. (b), Result of semi-automatic circle detection visualized as
Voronoi diagram. (c), Final drop contours. Both drop segmentation steps
were corrected by additional manual input where needed. (d), Visualization
of drop surfaces a�er simulation. Shown is the solution for the default drop
volume parameter.

index, surface energy). The desired output is a dense mapping from
pixels in the input image to light �eld rays, 3D drop surface recon-
structions, as well as depth estimates and renderings of the scene
from new virtual camera positions. To achieve this goal, we pro-
pose a reconstruction pipeline (Fig. 2a) that consists of four major
analysis and processing stages:
• extraction and simulation of water drops and ray geometries,
• extraction of scene features that serve as stereo constraints,
• a re�nement step (bundle adjustment) to determine the volume

parameter for each drop and establish the �nal pixel-to-ray map-
ping, and

• post-processing of the resulting light �eld (depth estimation and
rendering).

Here, we motivate and explain these stages.

4.1 Drop extraction and simulation
Since the surface of a sessile drop is energy minimizing, for known
physical parameters, the geometry is determined up to a single
scalar parameter by the contact line (where drop surface and sub-
strate meet) [Adamson and Gast 1997]. So the �rst step is to �nd
this contour in the input image. Fully automatic segmentation of
drops in images is an unsolved computer vision problem; existing
approaches to image restoration [Eigen et al. 2013; Shan et al. 2010]
only produce drop contours as a by-product and are not accurate
enough to serve as input for drop shape simulation. We approach
this problem in a semi-automatic fashion. Since all drops are more
or less round, we initialize a map of coarse drop locations with a
circle detector (Fig. 3b), drop centers serve as foreground constraints
and their Voronoi diagram as background constraints. A state-of-
the-art image segmentation algorithm [Gulshan et al. 2010] is then
used to determine accurate drop contours. To aid the automatic
segmentation in ambiguous or otherwise challenging regions, the
user can provide additional constraints by annotating additional
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Fig. 4. Without the influence of gravity, area A and volumev of a spherical
drop would relate as v ∼ A3/2. (a), In a pilot experiment, we placed drops
of known volume on the substrate and measured their contact area. (b),
Regression of a power function reveals that the actual exponent is slightly
lower (v ∼ A1.33). We use this result to initialize the default drop volume.

drop and background regions. The result is a contour line for each
drop (Fig. 3c) which serves as input for a physical simulation that
computes the drop geometries [Iliev and Pesheva 2006]. A detailed
description of this simulation step can be found in Appendix A.
Although we experimentally established a rough relation between
a drop’s contact area and its expected default volume by using a
small syringe to place drops of roughly known volume on an acrylic
window and �tting a power function to the observations (Fig. 4),
the exact volume parameter is not yet known at this stage. For each
drop, we simulate a bundle of surfaces that sample a range of values
around the default parameter value. One such default solution is
visualized in Fig. 3d.

Under a geometric optics model, each pixel samples a primary
ray entering the camera, which in turn corresponds to a secondary
ray of light leaving the scene. Given the refractive geometry of glass
pane and water drops, the relation between primary and secondary
rays can now be computed via ray tracing. For each primary ray,
we thus obtain a fan of secondary rays, one ray for each value of
the (yet unknown) drop volume parameter (Fig. 2b).

4.2 Feature extraction and matching
To further constrain the solution, we use SIFT [Lowe 1999] to extract
keypoints from the image and identify scene features that are visible
in multiple neighboring drops. The main challenge in this stage is
that the drop views in the input image are strongly distorted, making
scene features appear quite di�erently in di�erent views (Fig. 1c).
Prior to keypoint extraction, we therefore undistort the drop views
using the default pixel-to-ray mapping from the previous stage. In
particular, we perform a simple projection of each drop view to a
plane located roughly at the distance of the scene. This e�ectively
recti�es the view (Fig. 1d), allowing SIFT to perform well despite the
fact that the default drop volume estimate (used for undistortion)
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Fig. 5. Two examples of feature clusters found in di�erent scenes, projected
back into the original images. The total number of such clusters and the
number of keypoints in each cluster depend on the visual complexity of the
scene, as well as the drop arrangement.

may not be the �nal one. The next step is to match keypoints found
in neighboring views that correspond to the same scene feature.
Using the algorithm from Appendix B, we obtain a set of scene
features that are visible in more than one drop, and for each of the
features a set of keypoints in the input image that show the feature
(the feature cluster, Fig. 5). We de�ne the matching matrix G to
re�ect the relation between scene-space features and image-space
keypoints,

G(f ,k) =

{
1, if keypoint k belongs to feature f ,
0, else.

(1)

In combination with the results from the previous stage, we further
know the fan of secondary rays that belongs to each keypoint as a
function of the drop volume parameter.

4.3 Geometry refinement
The features found in the previous stage now become the stereo
constraints in our reconstruction: all secondary rays belonging
to the same feature should intersect in the same point in space
(Fig. 2c). At the same time, the secondary rays belonging to features
in the same drop are all controlled jointly by that drop’s volume
parameter. The purpose of this stage is to determine the vector of
volume parameters v = (v1, . . . ,vm ) (one parameter per drop) that
produces the best global agreement between secondary rays. To this
end, we de�ne a cost function F (v) that sums up, across all features
f and all pairs of image keypoints (ki ,kj ) that represent a given
feature in drops i and j, the line-line distance distray between the
corresponding secondary rays,

F (v) =
∑
f

∑
ki,kj

G(f ,ki )G(f ,kj ) dist(vi ,vj )ray (ki ,kj ). (2)

This formulation is closely related to bundle adjustment, or the joint
estimation of viewing parameters and scene geometry from multi-
view stereo images [Hartley and Zisserman 2004]. Rather than the
usual reprojection error of features in image space, our cost function
measures the distance between rays in scene space. To approach
the high-dimensional non-linear problem of minimizing F (v), we

use an iterative coordinate descent scheme. We simultaneously
perform line searches along all coordinate axes (volume parameters)
and choose the solution with the lowest cost. This updating step
is iterated until a local minimum of F is reached. To increase the
chance of obtaining a good solution close to the global optimum, we
restart the optimization process niterations = 3 times with perturbed
solution vectors.

The outcome of the re�nement stage is a vector of drop volumes
v that is locally optimal under Eq. 2. This results in a dense and
uniquely de�ned mapping from input pixels to secondary rays,
which concludes the geometric calibration of the light �eld. To
validate the outcome, we also compute the root mean square (RMS)
scene feature localization error. We obtain it from the pairwise line-
line distances across all pairs of matched keypoints, a value that
will increase when either drop or scene geometries are inconsistent.

4.4 Rendering
For the further assessment of the resulting light �elds, we imple-
mented a specialized renderer. Unlike light �elds captured using
properly designed optical systems, the ones reconstructed from liq-
uid drops using the described method are irregularly and sparsely
sampled. In addition, the estimated ray geometry is a�ected by
residual inaccuracies.

To obtain high-quality 2D images from these liquid light �elds,
we use a rendering scheme that is guided by a per-pixel depth
estimate. First, we set the parameters of a synthetic camera. For the
desired viewpoint, we de�ne a stack of planes of su�cient extent and
resolution to fully contain the scene. By propagating all rays to the
plane and integrating them there, a focused image is obtained from
a light �eld [Levoy and Hanrahan 1996]; all focused images together
form a focal stack (Fig. 1d). The sparsity of views necessitates careful
selection of rays and a speci�c weighting scheme. At any given
location in a given plane, we retrieve a set of rays that intersect in
this location. From these rays and the corresponding pixel values
in the input image, we compute a weighted average color value,
and the uncertainty as the weighted standard deviation of radiance
samples. The underlying assumption is that if all samples have the
same color, they probably originate from the same point in the scene.
Hence, a low standard deviation indicates a likely depth value. We
use this relation to extract a per-pixel depth assignment from the
focal stack (Fig. 6a).

As the �nal step, we follow the standard practice [Wanner and
Goldlücke 2014] of using the depth map to extract an all-in-focus
image from the focal stack (Fig. 6b). To render the scene under a dif-
ferent synthetic view, all steps including the focal stack computation
are repeated. We provide implementation details and parameters in
Appendix C.

5 RESULTS
To demonstrate our method, we acquired liquid light �elds of six
scenes, three of which are shown in Fig. 6. All input images as well as
the recovered ray mappings are available as supplemental datasets
to this paper. We further provide a collection of animated results
in the supplemental video. All reconstructions rely exclusively on
“wet” rays that passed through drops, except Fig. 7 where some of
the artifacts introduced by “dry” rays can be seen.
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(a) (b)

Fig. 6. Depth estimation and rendering for the “Animals” (top), “Candy” (middle) and “Flowers” (bo�om) light fields. From a weighted focal stack (Fig. 1d),
we estimate a depth map (a) and use it to render all-in-focus images (b). The cross-eye stereogram shown here was obtained by performing all rendering steps
twice under di�erent camera se�ings. Animated versions of these results are available in the supplemental video.

Scene ndrops # Clusters RMS error ET Ādrops f̄drops nsec δ̄s ᾱ

Animals 126 1924 4.46 mm 250 ms 113.72 mm2 89.49 mm 6 457 957 0.10 mm 3.03°
Candy 210 5454 0.79 mm 40 ms 85.01 mm2 109.04 mm 5 064 711 0.10 mm 2.68°
Flowers 123 1868 1.31 mm 500 ms 112.50 mm2 89.59 mm 6 236 003 0.10 mm 2.98°
CarStunts* 226 3424 2.66 mm 5 ms 84.09 mm2 103.44 mm 5 389 975 0.10 mm 2.65°
Dwarfs* 143 2188 4.02 mm 250 ms 93.01 mm2 84.17 mm 6 214 855 0.09 mm 2.72°
Firework* 205 489 1.33 mm 125 ms 85.39 mm2 106.02 mm 5 036 900 0.10 mm 2.72°

Table 1. Our example scenes in numbers: count of drops ndrops used for reconstruction, number of feature clusters, RMS localization error of 3D features,
exposure time, average drop footprint Ādrops, average drop focal length f̄drops, number of secondary rays nsec in final light field, average spacing δ̄sbetween
secondary rays at a typical scene distance, average angle ᾱ between drop views at scene depth (view separation). Results for the scenes marked with * are
presented and discussed in the supplemental document.

The colorful “Animals” scene consists of plush animals and wooden
building blocks in front of a richly textured Hundertwasser pattern.
All surfaces are of mostly Lambertian (di�use) re�ectance. After

undistorting the drop views using the initial drop estimate, the al-
gorithm produces a large number of plausible clusters that reach
even into the peripheral parts of some drops (Fig. 5), proving the
good quality of the recti�cation step. After the light �eld calibration,
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Fig. 7. Rendering of the “Animals” data set using both “wet” and “dry” rays.
The usage of “dry” rays increases the resolution (see e.g. the furry texture at
the mouse’s nose) but also introduces artifacts due to unsegmented drops
and incomplete coverage.

the alignment of the drop views and the depth estimates are of
su�cient quality (Fig. 6b) to produce all-in-focus renderings that
are rich in detail (Fig. 6c) and convey a good depth impression. In
the drop estimation step, the 3D localization errors for the sparse
feature clusters are on the order of 4.5 mm and hence relatively
high compared to the other datasets. We notice that features located
around depth discontinuities tend to produce the highest errors. A
possible explanation is that in regions with prominent occlusion
e�ects, detected features may not correspond to real points in space
and can therefore be stereo-inconsistent.

Using the same scene, we also experimented with the usage of
“dry” rays for rendering (Fig. 7). We observed a noticeable increase
in detail for projections close to the primary camera projection, but
also heavy artifacts caused by the numerous unsegmented small
drops and the “Swiss cheese” topology of the direct view. To our
knowledge, there is no fully automatic, pixel-precise and robust
segmentation method that would enable the use of “dry” rays in the
geometry re�nement step as well. Here, mislabeled pixels would not
only produce visual artifacts but also add an uncontrollable error
source to the drop volume estimation.

The “Candy” scene is an arrangement of di�erent kinds of candy
(chocolate bars, gummy bears, etc.) in small plastic packages. It
exhibits strongly non-Lambertian re�ectance, since many of the
packages are made of of high-gloss material or even partly transpar-
ent. The scene has a relatively shallow depth range (7 cm) which,
despite the challenging materials, allows the feature optimization
to achieve sub-millimeter localization errors. As expected from the
view-dependent nature of glossy and transparent materials, the re-
constructed depth maps are not as smooth as in the other scenes.
Still, the recovered depth estimates coarsely re�ect the overall scene
structure and are su�cient to produce output renderings of rel-
atively high resolution (Fig. 6). In fact, the stereo pair conveys a
decent stereo impression of the scene, including view-dependent
specular highlights. We note that in regions of constant color, small
errors in the depth estimate may have little or no e�ect on the
rendered outcome.
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Fig. 8. Description of geometric parameters used in Section 6.1.

The “Flowers” scene consists of an arrangement of meadow �ow-
ers that are of mostly di�use re�ectance. The recovery of ray geom-
etry works robustly, as evidenced by a small feature reconstruction
error. Nevertheless, this light �eld proves to be extremely challeng-
ing to render: the recovered depth maps and, consequently, the
renderings, contain numerous artifacts (Fig. 6). We identify several
factors that may contribute to this problem. They include the total
scene depth (measured with a ruler at 25 cm), the presence of repeti-
tive features (daisy petals and small yellow �owers), and overall high
spatial and angular frequencies which are not adequately sampled
by the sparse and low-resolution drop views.

6 SYSTEM PERFORMANCE
AND QUANTITATIVE EVALUATION

Spray-on optical systems are highly volatile and therefore hard to
impossible to fully characterize “in the wild”. Here, we list basic geo-
metric relations for scattered arrangements of lens-like elements,
and discuss the factors that a�ect the ray-optical system resolu-
tion under a pinhole model for the primary camera. We further
use a synthetic replica of our experimental setup to measure the
reconstruction accuracy of our pipeline under realistic conditions.

6.1 Resolution
Since light �eld imagers commonly trade spatial resolution against
angular resolution, we used the following three measures to char-
acterize our system: The average spacing between secondary rays
when intersecting a plane at a typical scene depth (д̄ds = 300 mm),
the average angular separation ᾱ between di�erent drop views at
that depth, and the total number nsec of secondary rays. Assuming
the drops to behave like thin lenses and taking into account the geo-
metric parameters introduced in Fig. 8, we can estimate the spatial
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(a) Error of secondary rays [◦], ground truth segmentation (b) Secondary ray error [◦], semiautomatic segmentation (Section 4.1)
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Fig. 9. False color error plots for our light field calibration on a synthetic scene.

resolution δ̄s of a setup in the paraxial limit as

δ̄s =

(
д̄ds − f̄d

)
· д̄cd

f̄d · fc
δc (3)

and its average view separation ᾱ as

ᾱ = 2 tan−1(d̄drops/2д̄ds). (4)

Example values from our experimental datasets can be found in
Table 1. Supposing uniformly distributed drops, the total number of
secondary rays nsec can be estimated as

nsec = npr
Ādrops · ndrops

Asensor ·
(
дcd/fc

)2 , (5)

where, in addition to the symbols introduced in Fig. 8, Ādrops is the
average drop footprint (area), ndrops the total number of segmented
drops, and Asensor the sensor area.

6.2 Synthetic experiment
Since we are not aware of any solutions for 3D scanning water
drop surfaces, we assessed the accuracy of our algorithm using a
synthetic experiment. Using the Mitsuba renderer [Jakob 2010], we
modeled our imaging setup, procedurally generated and rendered a
scene with random clutter under di�erent aperture settings (f /2,

f /4, f /8, f /22, pinhole), and extracted ground-truth primary and
secondary ray geometries. An example rendering can be found in
Fig. 9c. The textures were randomly sampled from the Describable
Textures Dataset [Cimpoi et al. 2014], and for the 116 virtual water
drops we re-used meshes from previous simulations, which ful�ll
the Young-Laplace equation and can therefore be assumed to be
physically plausible under the given constraints.

We then performed a full ray-space calibration (starting with
drop simulation) using our pipeline, and computed the RMS angular
error in secondary rays and the RMS error in the intersection point
between primary ray and drop. For both measures, the perfectly
known “dry” rays were of course excluded. By randomly removing
drops from the set, we varied the density of views fed into the
bundle adjustment step. As the error plot in Fig. 10 shows, the
typical ray-space calibration error thus obtained was 0.1° to 0.2°
with a typical RMS drop surface error of 0.06 mm. Notably, up to
f /8 the calibration quality was mostly independent of the aperture
and even across a wide range of drop numbers. The pipeline only
started to break down when neighboring views stopped to share the
same scene features due to the increased distance between them.
Example error maps for the full set of drops are shown in Fig. 9a,b.
We observe that a few drops show signi�cantly higher errors than
the rest, which we attribute to mismatched keypoints.
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Fig. 10. The RMS angular error for secondary rays, plo�ed as function of
the number of drops used for the reconstruction. Only as about 80% of the
drops are removed from the set, the error starts increasing significantly. For
large apertures (f /2, f /4) this e�ect can be observed earlier.

These results were obtained using ground-truth segmentation
of drop contours, also obtained from the renderer. To evaluate the
in�uence of errors in the segmentation, we also performed the semi-
automatic segmentation step as described in Section 4.1. For the full
set of drops at f/22, this change increased the RMS angular error
from 0.136° to 0.234°.

7 DISCUSSION AND OUTLOOK
What is possible? We were able to show, to our knowledge for

the �rst time, that capturing a light �eld through weakly controlled
liquid optics, like water drops on a window, is an ambitious but
realistic goal. From a single input image, our pipeline successfully
recovers drop geometries, pixel-to-ray mappings and depth maps.
Since water drops are minimal surfaces and hence smooth, the result-
ing image quality is at least comparable to what has been achieved
using randomly structured re�ective or refractive materials [Antipa
et al. 2016; Fergus et al. 2006; Wender et al. 2015], even though our
approach does not rely on exhaustive calibration. The recovered
drop geometries, while technically a by-product, are of high qual-
ity, so depending on one’s viewpoint one might also interpret our
method as a 3D scanner for water drops that exploits stereo cues
from the surrounding light �eld.

What are the limiting factors? The main limitations of our method
are the restriction to a horizontal plane and the need for manual in-
teraction during the drop segmentation step. For non-trivial scenes,
like CarStunts, using colored water can reduce the amount of man-
ual intervention required. We captured our experimental data in
a conservative, near-pinhole setting (f /22) to achieve good focus
in the plane and in the scene. This limitation is not exclusive to
our method; in fact, a large part of light �eld research relies on
synthetic or experimental reference data obtained under pinhole
[Honauer et al. 2016] or near-pinhole [Kim et al. 2013; Vaish et al.
2008] settings. On the other hand, our evaluation on synthetic data
suggests that the ray-space recovery and the drop surface estimation
work reliably for much wider apertures as well. Finally, we note
that rendering new views from sparsely and irregularly sampled
light �elds (especially with some residual ray-space uncertainty)
remains a major challenge that even state-of-the-art techniques are

still not quite up to. In fact, most image-based techniques do not
generalize to our setting, so signi�cant work will have to be done
on depth estimation and �ltering techniques to obtain the highest
possible output quality under the given constraints.

What might become possible, and how? Water drops on slanted
substrates constitute a dynamic phenomenon that is currently not
covered by our model. The simulation of such scenarios is of great
interest in various application �elds (like architectural and automo-
tive design) and the subject of ongoing research. It is therefore our
hope that a solution could become possible in the not-too-distant
future. While we demonstrate our high-level approach on the recov-
ery of light �elds, the quality obtained in a setting as uncontrolled
as ours will obviously never rival that from a properly designed
optical system. However, we can imagine many imaging situations
under unfavorable conditions that could bene�t from restoration
techniques based on similar ideas. The recovered drop geometries
can be of interest in materials science where the wetting behavior
of liquids on surfaces is an important area of investigation. Esti-
mating a handful additional material parameters (like the surface
tensions, currently assumed to be known) seems like a plausible
leap regarding the hundreds of degrees of freedom we are already
recovering.

8 CONCLUSION
In this work, we set out to explore the challenge of capturing light
�elds through drops sitting on a clear window. To this end, we in-
troduced a novel approach for establishing the ray geometries in
this scenario, and crafted a reconstruction pipeline from it. Starting
from a 2D input image, our algorithm segments drop outlines, sim-
ulates drop shapes, traces rays through the drops to undistort the
image, and uses image features to re�ne the parameters. A key fea-
ture of our pipeline is its transparency, modularity and robustness
regarding the choice of the individual components. The resulting
light �elds typically contain 100 to 250 scattered views (one per
drop), which can then be combined to render the scene from novel
viewpoints.

Our research is motivated by a line of work that aims to replace
carefully designed and highly specialized capture setups with a
combination of casually captured data, careful calibration and com-
putational reconstruction. By contributing a novel take on integral
imaging, and by showcasing the use of physical simulation to regu-
larize severely underconstrained imaging tasks, we hope that this
paper will serve as a source of inspiration for future work.

REFERENCES
Adamson, A. and A. Gast. 1997. Physical Chemistry of Surfaces. Wiley.
Adelson, E. H. and J. R. Bergen. 1991. The plenoptic function and the elements of early

vision. Computational models of visual processing 1, 2 (1991).
Antipa, N., S. Necula, R. Ng, and L. Waller. 2016. Single-Shot Di�user-Encoded Light

Field Imaging. In IEEE International Conference on Computational Photography
(ICCP).

Barnum, P. C., S. G. Narasimhan, and T. Kanade. 2010. A Multi-layered Display with
Water Drops. ACM Trans. Graph. 29, 4, Article 76 (2010), 7 pages. DOI:https:
//doi.org/10.1145/1778765.1778813

Bouguet, J.-Y. 2004. Camera calibration toolbox for MATLAB. (2004).
Brakke, K. A. 1992. The surface evolver. Experimental mathematics 1, 2 (1992), 141–165.
Brakke, K. A. 2013. Surface Evolver 2.70. (2013).

http://facstaff.susqu.edu/brakke/evolver/evolver.html.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 35. Publication date: July 2017.

https://doi.org/10.1145/1778765.1778813
https://doi.org/10.1145/1778765.1778813


35:10 • Iseringhausen, J. et al

Chai, J.-X., X. Tong, S.-C. Chan, and H.-Y. Shum. 2000. Plenoptic Sampling. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’00). 307–318.

Chronis, N., G. L. Liu, K.-H. Jeong, and L. P. Lee. 2003. Tunable liquid-�lled microlens
array integrated with micro�uidic network. Opt. Express 11, 19 (Sep 2003), 2370–2378.
DOI:https://doi.org/10.1364/OE.11.002370

Cimpoi, M., S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. 2014. Describing Tex-
tures in the Wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Davis, A., M. Levoy, and F. Durand. 2012. Unstructured Light Fields. Comp. Graph. Forum
31, 2 (May 2012), 305–314. DOI:https://doi.org/10.1111/j.1467-8659.2012.03009.x

De Gennes, P.-G., F. Brochard-Wyart, and D. Quéré. 2004. Capillarity and wetting
phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media.

Eigen, D., D. Krishnan, and R. Fergus. 2013. Restoring an Image Taken through a
Window Covered with Dirt or Rain. In IEEE International Conference on Computer
Vision (ICCV). IEEE, 633–640.

Fergus, R., A. Torralba, and W. T. Freeman. 2006. Random lens imaging. Technical
Report MIT-CSAIL-TR-2006-058.

Fuchs, M., M. Kächele, and S. Rusinkiewicz. 2013. Design and Fabrication of Faceted
Mirror Arrays for Light Field Capture. Computer Graphics Forum 32, 8 (2013),
246–257. DOI:https://doi.org/10.1111/cgf.12201

Georgiev, T., K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala. 2006. Spatio-
angular Resolution Tradeo�s in Integral Photography. In Proceedings of the 17th
Eurographics Conference on Rendering Techniques (EGSR ’06). Eurographics Associa-
tion, 263–272. DOI:https://doi.org/10.2312/EGWR/EGSR06/263-272

Goldlücke, B., E. Strekalovskiy, and D. Cremers. 2012. The natural vectorial total
variation which arises from geometric measure theory. SIAM Journal on Imaging
Sciences 5, 2 (2012), 537–563.

Gortler, S. J., R. Grzeszczuk, R. Szeliski, and M. F. Cohen. 1996. The Lumigraph. In Proc.
23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’96). ACM, New York, NY, USA, 43–54. DOI:https://doi.org/10.1145/237170.237200

Gulshan, V., C. Rother, A. Criminisi, A. Blake, and A. Zisserman. 2010. Geodesic
star convexity for interactive image segmentation. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE, 3129–3136.

Han, J. Y. and K. Perlin. 2003. Measuring Bidirectional Texture Re�ectance with a
Kaleidoscope. ACM Trans. Graph. (Proc. SIGGRAPH 2003) (2003), 741–748. DOI:
https://doi.org/10.1145/1201775.882341

Hartley, R. I. and A. Zisserman. 2004. Multiple View Geometry in Computer Vision (2nd

ed.). Cambridge University Press.
Hickson, P., E. F. Borra, R. Cabanac, S. C. Chapman, V. De Lapparent, M. Mulrooney,

and G. A. Walker. 1998. Large Zenith Telescope project: a 6-m mercury-mirror
telescope. In Astronomical Telescopes & Instrumentation. International Society for
Optics and Photonics, 226–232.

Honauer, K., O. Johannsen, D. Kondermann, and B. Goldluecke. 2016. A dataset and
evaluation methodology for depth estimation on 4D light �elds. In Asian Conference
on Computer Vision. Springer.

Hullin, M. B., M. Fuchs, I. Ihrke, H.-P. Seidel, and H. P. A. Lensch. 2008. Fluorescent
Immersion Range Scanning. ACM Trans. Graph. (Proc. SIGGRAPH 2008) 27, 3 (Aug.
2008), 87:1–87:10.

Hullin, M. B., H. P. A. Lensch, R. Raskar, H.-P. Seidel, and I. Ihrke. 2011. Dynamic
Display of BRDFs. In Computer Graphics Forum (Proc. EUROGRAPHICS), Oliver
Deussen and Min Chen (Eds.). Eurographics, Blackwell, Llandudno, UK, 475–483.

Ihrke, I., K. Kutulakos, H. Lensch, M. Magnor, and W. Heidrich. 2008. State of the art in
transparent and specular object reconstruction. In EUROGRAPHICS 2008 STAR.

Ihrke, I., G. Wetzstein, D. Lanman, and W. Heidrich. 2011. State of the art in computa-
tional plenoptic imaging. In EUROGRAPHICS 2011 STAR.

Iliev, S. 1995. Iterative method for the shape of static drops. Computer Methods in
Applied Mechanics and Engineering 126, 3 (1995), 251–265.

Iliev, S. 1997. Static drops on an inclined plane: equilibrium modeling and numerical
analysis. Journal of colloid and interface science 194, 2 (1997), 287–300.

Iliev, S. and N. Pesheva. 2003. Wetting properties of well-structured heterogeneous
substrates. Langmuir 19, 23 (2003), 9923–9931.

Iliev, S. and N. Pesheva. 2006. Nonaxisymmetric drop shape analysis and its application
for determination of the local contact angles. Journal of colloid and interface science
301, 2 (2006), 677–684.

Jakob, W. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.
Kim, C., H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross. 2013. Scene Recon-

struction from High Spatio-Angular Resolution Light Fields. ACM Trans. Graph.
(Proc. SIGGRAPH 2013) 32, 4 (2013), 73:1–73:12.

Kuiper, S. and B. Hendriks. 2004. Variable-focus liquid lens for miniature cameras.
Applied Physics Petters 85, 7 (2004), 1128–1130.

Kutulakos, K. N. and E. Steger. 2008. A Theory of Refractive and Specular 3D Shape
by Light-Path Triangulation. International Journal of Computer Vision 76, 1 (2008),
13–29. DOI:https://doi.org/10.1007/s11263-007-0049-9

Levoy, M. and P. Hanrahan. 1996. Light Field Rendering. In Proc. 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). ACM, New York,

NY, USA, 31–42. DOI:https://doi.org/10.1145/237170.237199
Levoy, M., R. Ng, A. Adams, M. Footer, and M. Horowitz. 2006. Light Field Microscopy.

ACM Trans. Graph. (Proc. SIGGRAPH 2013) (2006), 924–934. DOI:https://doi.org/10.
1145/1179352.1141976

Lippmann, G. 1908. La photographie intégrale. CR Acad. Sci. 146 (1908), 446–451.
Lowe, D. G. 1999. Object recognition from local scale-invariant features. In IEEE

International Conference on Computer Vision (ICCV). 1150–1157.
Manakov, A., J. F. Restrepo, O. Klehm, R. Hegedüs, E. Eisemann, H.-P. Seidel, and I. Ihrke.

2013. A Recon�gurable Camera Add-on for High Dynamic Range, Multi-Spectral,
Polarization, and Light-Field Imaging. ACM Trans. Graph. (Proc. SIGGRAPH 2013)
32, 4, Article 47 (July 2013), 14 pages. DOI:https://doi.org/10.1145/2461912.2461937

Mukaigawa, Y., S. Tagawa, J. Kim, R. Raskar, Y. Matsushita, and Y. Yagi. 2011. Hemi-
spherical Confocal Imaging Using Turtleback Re�ector. In Computer Vision – ACCV
2010. Springer, 336–349. DOI:https://doi.org/10.1007/978-3-642-19315-6_26

Ng, R. 2005. Fourier Slice Photography. ACM Trans. Graph. (Proc. SIGGRAPH 2005)
(2005), 735–744. DOI:https://doi.org/10.1145/1186822.1073256

O’Neill, F. T. and J. T. Sheridan. 2002. Photoresist re�ow method of microlens production
Part I: Background and experiments. Optik-International Journal for Light and
Electron Optics 113, 9 (2002), 391–404.

Pock, T., D. Cremers, H. Bischof, and A. Chambolle. 2010. Global Solutions of Variational
Models with Convex Regularization. SIAM Journal on Imaging Sciences (2010).

Raskar, R., A. Agrawal, C. A. Wilson, and A. Veeraraghavan. 2008. Glare Aware
Photography: 4D Ray Sampling for Reducing Glare E�ects of Camera Lenses. ACM
Trans. Graph. (Proc. SIGGRAPH 2008) 27, 3, Article 56 (Aug. 2008), 10 pages. DOI:
https://doi.org/10.1145/1360612.1360655

Shan, Q., B. Curless, and T. Kohno. 2010. Seeing Through Obscure Glass. In Proceedings of
the 11th European Conference on Computer Vision: Part VI (ECCV’10). Springer-Verlag,
Berlin, Heidelberg, 364–378. http://dl.acm.org/citation.cfm?id=1888212.1888241

Taguchi, Y., A. Agrawal, A. Veeraraghavan, S. Ramalingam, and R. Raskar. 2010. Axial-
Cones: Modeling Spherical Catadioptric Cameras for Wide-Angle Light Field Ren-
dering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010) 29, 6
(Dec 2010), 172:1–172:8.

Tao, M. W., S. Hadap, J. Malik, and R. Ramamoorthi. 2013. Depth from Combining
Defocus and Correspondence Using Light-Field Cameras. In IEEE International
Conference on Computer Vision (ICCV). 673–680.

Tarini, M., H. P. A. Lensch, M. Goesele, and H.-P. Seidel. 2005. 3D acquisition of
mirroring objects using striped patterns. Graphical Models 67, 4 (2005), 233–259.

Torralba, A. and W. Freeman. 2014. Accidental Pinhole and Pinspeck Cameras. Inter-
national Journal of Computer Vision 110, 2 (2014), 92–112. DOI:https://doi.org/10.
1007/s11263-014-0697-5

Vaish, V. and others. 2008. The (New) Stanford Light Field Archive. (2008).
http://light�eld.stanford.edu/lfs.html.

Veeraraghavan, A., R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin. 2007. Dappled
Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded
Aperture Refocusing. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 3, Article 69
(2007). DOI:https://doi.org/10.1145/1276377.1276463

Wang, T.-C., A. Efros, and R. Ramamoorthi. 2016. Depth estimation with occlusion
modeling using light-�eld cameras. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) (2016).

Wanner, S. and B. Goldlücke. 2014. Variational Light Field Analysis for Disparity
Estimation and Super-Resolution. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 3 (2014), 606–619.

Wei, L.-Y., C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley. 2015. Improving Light Field
Camera Sample Design with Irregularity and Aberration. ACM Trans. Graph. 34, 4,
Article 152 (2015), 11 pages. DOI:https://doi.org/10.1145/2766885

Weinmann, M., A. Osep, R. Ruiters, and R. Klein. 2013. Multi-View Normal Field Inte-
gration for 3D Reconstruction of Mirroring Objects. Proceedings of the International
Conference on Computer Vision (Dec. 2013), 2504–2511.

Wender, A., J. Iseringhausen, B. Goldlücke, M. Fuchs, and M. B. Hullin. 2015. Light
Field Imaging through Household Optics. In Vision, Modeling & Visualization, David
Bommes, Tobias Ritschel, and Thomas Schultz (Eds.). Eurographics Association,
159–166. DOI:https://doi.org/10.2312/vmv.20151271

Wetzstein, G., I. Ihrke, and W. Heidrich. 2013. On Plenoptic Multiplexing and Recon-
struction. International Journal of Computer Vision 101, 2 (2013), 384–400. DOI:
https://doi.org/10.1007/s11263-012-0585-9

Wilburn, B., N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M.
Horowitz, and M. Levoy. 2005. High Performance Imaging Using Large Cam-
era Arrays. ACM Trans. Graph. (Proc. SIGGRAPH 2005) (2005), 765–776. DOI:
https://doi.org/10.1145/1186822.1073259

You, S., R. T. Tan, R. Kawakami, Y. Mukaigawa, and K. Ikeuchi. 2016. Waterdrop Stereo.
CoRR (2016). arXiv:1604.00730v1

A DROP SHAPE ANALYSIS
The drop shape is approximated by a triangle mesh (we usenvertices =
12781 vertices), which we initialize as a spherical cap that ful�lls the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 35. Publication date: July 2017.

https://doi.org/10.1364/OE.11.002370
https://doi.org/10.1111/j.1467-8659.2012.03009.x
https://doi.org/10.1111/cgf.12201
https://doi.org/10.2312/EGWR/EGSR06/263-272
https://doi.org/10.1145/237170.237200
https://doi.org/10.1145/1201775.882341
https://doi.org/10.1007/s11263-007-0049-9
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/1179352.1141976
https://doi.org/10.1145/1179352.1141976
https://doi.org/10.1145/2461912.2461937
https://doi.org/10.1007/978-3-642-19315-6_26
https://doi.org/10.1145/1186822.1073256
https://doi.org/10.1145/1360612.1360655
http://dl.acm.org/citation.cfm?id=1888212.1888241
https://doi.org/10.1007/s11263-014-0697-5
https://doi.org/10.1007/s11263-014-0697-5
https://doi.org/10.1145/1276377.1276463
https://doi.org/10.1145/2766885
https://doi.org/10.2312/vmv.20151271
https://doi.org/10.1007/s11263-012-0585-9
https://doi.org/10.1145/1186822.1073259
http://arxiv.org/abs/1604.00730v1


4D Imaging through Spray-On Optics • 35:11

given volume and the contact angle that follows from the material-
speci�c wetting parameters under Young’s Law [De Gennes et al.
2004]. An iterative procedure then gradually transforms the initial
circular contact line until the desired contact line L is obtained [Iliev
and Pesheva 2006]. During this transition, the drop surface is gradu-
ally updated to ful�ll the Young-Laplace equation while preserving
the drop volume. The core numerical method employed is an it-
erative minimization procedure, �rst developed for homogeneous
surfaces [Iliev 1995] and then extended to treating heterogeneous
surfaces and line tension e�ects [Iliev 1997; Iliev and Pesheva 2003].
Equivalent tools are available in the public domain, for example
Surface Evolver [Brakke 1992, 2013]. Physical constants used in the
simulation are: д = 9.81 m/s2 for the gravity acceleration, and the
respective material values to model the wetting behaviour of water
on acrylic glass (the mass density ρwater = 1000 kg/m3 of the liquid
and the surface tensions γwater = 72.8 mN/m, γPMMA = 41.0 mN/m).

B FEATURE CLUSTERING
Keypoints k1 and k2 that form a correspondence match should
not only be visually similar but also geometrically plausible. We
therefore de�ne the distance measure

dist(v1,v2)(k1,k2) = α dist(v1,v2)
ray (k1,k2)

+ (1 − α) distSIFT (k1,k2) , (6)

where distray
(v1,v2) (k1,k2) is the line-line distance between the

two corresponding secondary rays predicted under the drop volume
parameters v1 and v2, and distSIFT (k1,k2) the Euclidean distance
between SIFT feature vectors. To achieve compatibility, both dis-
tance functions are normalized to the interval [0, 1] by dividing
by the maximum respective distance across all pairs of keypoints.
The parameter α ∈ [0, 1] controls the relative weighting of the two
terms. We keep it constant at α = 0.2.

Using this distance measure, we construct a sparse graph of fea-
ture correspondences by adding clusters of scene-space features.
We start with the pair of keypoints that are closest to each other
with a distance dmin, and proceed by adding keypoints from adja-
cent drops with a distance no greater than β · dmin to the existing
ones. This procedure is iterated until every drop belongs to at least
nclusters=15 clusters. In all our experiments, we set β =2; keypoints
that already belong to a cluster will no longer be considered in
following iterations.

C RENDERING
For depth estimation, we use a variant of a plane sweep algorithm
in order to deal with the irregular set of rays. The depth map is
viewpoint-dependent. For a given camera and target resolution,
we initialize a range of 75–100 depth layers at discrete distances
z ∈ {z1, . . . , zN } from the camera. For each depth layer z and pixel x ,
we compute the color vector I {r,д,b }z (x) as a weighted average of the
radiances L over the set of rays Rx,z , a subset of all rays intersecting
the plane within the footprint of the pixel,

I
{r,д,b }
z (x) =

1∑
wr

∑
r∈Rx,z

wrL
{r,д,b } (r) . (7)

For the set Rx,z we choose the �ve intersecting rays that have the

(a) Naïve (unregularized) depth map (b) TV-regularized depth map

Fig. 11. E�ect of regularization on the depth estimate.

smallest angular distance αr to the query ray that belongs to pixel
x in the virtual camera, i.e., that are most representative for the
desired synthetic view. The weights wr are given by

wr = 1 −
αr

maxq∈Rx,z (αq)
. (8)

An example of such a weighted focal stack Iz (x) is shown in Fig. 1d.
We use it to compute the cost ρ(x , z) for assigning depth z to x using
the root-mean-square-deviation

ρ(x , z) =
1
3

∑
c ∈{r,д,b }

( ∑
r∈Rx,z

(
Lc (r) − Icz (x)

)2

|Rx,z |

)1/2
(9)

over the radiances L(r). Minimizing this cost for each pixel inde-
pendently results in a noisy depth estimate with signi�cant errors
around depth discontinuities (Fig. 11). Therefore, we formulate the
cost of the full depth map d on the image plane Ω as

E(d) =

∫
Ω
‖∇d(x)‖ + λρ (x ,d (x)) dx . (10)

The total-variation (TV) penalty of the gradient of the depth map
encourages piecewise smooth solutions and can be optimized using
the technique of functional lifting [Pock et al. 2010]. We use the
implementation provided by cocolib [Goldlücke et al. 2012]. Given
the depth map d , we obtain the all-in-focus image Iall from the cho-
sen view point by extracting the color from the layer corresponding
to the correct depth label, i.e. setting Iall(x) = Id (x )(x).
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