
Optimized Data Transfer for Time-dependent, GPU-based Glyphs
S. Grottel, G. Reina, and T. Ertl

Institute for Visualization and Interactive Systems, Universität Stuttgart

ABSTRACT

Particle-based simulations are a popular tool for researchers in var-
ious sciences. In combination with the availability of ever larger
COTS clusters and the consequently increasing number of simu-
lated particles the resulting datasets pose a challenge for real-time
visualization. Additionally the semantic density of the particles ex-
ceeds the possibilities of basic glyphs, like splats or spheres and
results in dataset sizes larger by at least an order of magnitude.
Interactive visualization on common workstations requires a care-
ful optimization of the data management, especially of the trans-
fer between CPU and GPU. We propose a flexible benchmarking
tool along with a series of tests to allow the evaluation of the per-
formance of different CPU/GPU combinations in relation to a par-
ticular implementation. We evaluate different uploading strategies
and rendering methods for point-based compound glyphs suitable
for representing the aforementioned datasets. CPU and GPU-based
approaches are compared with respect to their rendering and stor-
age efficiency to point out the optimal solution when dealing with
time-dependent datasets. The results of our research are of general
interest since they can be transferred to other applications where
CPU-GPU bandwidth and a high number of graphical primitives
per dataset pose a problem. The employed tool set for streamlining
the measurement process is made publicly available.

Index Terms: I.3.6 [Computer Graphics]: Methodology and Tech-
niques I.3.6 [Computer Graphics]: Graphics data structures and
data types I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism

1 INTRODUCTION

The performance-optimized rendering of points or splats has been
investigated for some time now. The applications of these tech-
niques can be roughly divided into two main topics. The first relates
to point set surface rendering, where the geometry of a single point
is usually a very simple surface (circular or elliptic splats [3]). The
rendering quality of such splats has been steadily improved over
the years to yield high surface quality (see [2] and [14]). The other
main area employs different kinds of glyphs with higher semantic
density. This includes rendering of such glyphs on the GPU us-
ing point billboards for particle datasets (e.g. see figure 1, [21], or
[11]) and even more complex glyphs for information visualization
purposes [5].

To obtain interactive performance, much time has been dedicated
to develop efficient storage, like in-core representations and hierar-
chical data structures (for example in [18] or [19], among many
others). Linear memory layouts have been appreciated not only for
their benefits for rendering performance, but also for the advantages
when rendering out-of-core-data [13], which is why we employ this
approach in our visualization system as well. However, in all the re-
lated work we know of, the authors often make simplifying assump-
tions regarding first-level data storage and transfer to the GPU. One
assumption states that the visualized data is stored in the GPU mem-

ory and read from static vertex buffer objects, which of course en-
sures optimal performance. However, this is not possible when han-
dling time-dependent data. The other assumption regards the best-
performing upload techniques that need to be employed to cope
with such dynamic data, which at first glance also seem an obvious
choice. A software capable of handling such data has been shown
in [8], however, there are many factors that can potentially influ-
ence the resulting performance, starting from the hardware choice
and system architecture, over driver issues to implementation is-
sues (in the application as well as in drivers and hardware). To our
knowledge, these well-informed choices are very rarely supported
by hard numbers and direct comparison of the many alternatives,
so we want to fill this gap. Examples for performance analyses ex-
ist for the uploading and downloading of texture data as well as
for shader arithmetic [7]. A more generic benchmarking tool exists
[4], but it does not cover the aspects we are interested in, so we are
trying to provide more detailed data on the available vertex upload
mechanisms.

Figure 1: A typical real-world particle dataset from the field of
molecular dynamics, containing a mixture of ethanol and heptaflu-
oropropane, 1,000,000 molecules altogether, represented by GPU-
based compound glyphs.

The main contributions of this paper are the provision of a bench-
marking tool as well as the subsequent investigation of the perfor-
mance impact of different vertex upload strategies and silhouette
calculations for raycast GPU glyphs. We put these figures into con-
text by applying the findings to a concrete visualization example
from molecular dynamics simulations from the area of thermody-
namics. Widespread programs for molecular visualization exist, for
example VMD or Pymol, however their performance is not satisfac-
tory when working with current datasets, which consist of several
hundreds of thousands of molecules. One flaw is the lack of proper
out-of-core rendering support for time-dependent datasets, and the
other is insufficient optimization and visual quality, as the capabil-
ities of current GPUs are not significantly harnessed. Approaches



have been published which remedy the latter issue, such as em-
ploying non-perspectively correct texture-based primitives [1]. Per-
spective correctness as well as higher visual quality through am-
bient occlusion calculations has been added in [20], while higher
performance is obtained by aggregating atoms and generating their
bounding geometry from a single uploaded point [12], which is sim-
ilar to the approach we chose when utilizing the geometry shader
(see below).

We deduce different strategies for generating more complex
compound glyphs suited to represent current molecular models
from our analysis and evaluate the resulting performance with real-
world datasets. This approach can also be transferred to any other
field that makes use of particle-based simulations, such as compu-
tational physics, biochemistry, etc.

The remainder of this work is structured as follows: Section 2
describes different data upload strategies and their evaluation on
different machines with our tool for the automation of the bench-
marking process. In section 3 we present the approaches for ren-
dering compound glyphs along with performance figures. Section 4
concludes this work with a discussion of the presented results.

2 DATA UPLOAD

The datasets currently available to us require interactive rendering
and navigation of up to several million atomic representations, in
our case still mostly simple geometric primitives. This is relatively
easy to achieve for static datasets since current graphics cards offer
memory in about the same order of magnitude as workstation PCs
and considerable processing power for rendering the primitives we
use. For time-based datasets one of the most important aspects to
optimize is the data transfer between CPU and GPU.

2.1 Setup
The available optimizations unfortunately might depend on the em-
ployed platform and graphics library. We have therefore cross-
checked a random subset of our results from our OpenGL-based
visualization tool with a rudimentary DirectX 9 implementation and
found the performance nearly equal (within a margin of 3%), so no
further investigation was conducted for the time being. All consid-
erations in the following will thus only refer to using OpenGL as
the graphics library. Some of the tests have been conducted under
Linux as well, but they are also on par with the performance values
reported for Windows.

All of our tests have been performed with production software
that is used also by our project partners in natural and engineering
science for visualizing the output of their simulation runs. Addi-
tionally, we used synthetic datasets of varying sizes that are at least
on par with or slightly larger than the currently available average
simulation.

Since the available PCs nowadays also differ slightly in some ar-
chitectural choices (memory controller location, etc.) as well as in
processing power, we chose a small number of systems and GPUs
and tested the viable combinations of those. Two fast machines (In-
tel Core 2 Duo 6600, AMD Phenom 9600) and a slower one (AMD
Athlon 64 X2 4400+) were used, all running Windows XP x64. We
also included an AGP-based system (Intel P4 2.4Ghz) running 32-
bit XP; for comparability all machines used the same 32bit binaries.
The PCIe graphics cards we rotated through the machines were an
Nvidia GeForce 6800 GS, a 7900 GT, an 8600 GT and a 8800 GTX.
Additionally we tested a GTX280 in the Core2 machine (The other
computers did not have a adequate power supply). All cards except
the GTX280 use driver version 169.21. Since the GTX280 is not
supported by the old driver, we had to use version 177.51 (which in
turn does not support the older cards).

No AMD cards were used since their OpenGL support is cur-
rently insufficient for any of our algorithms. Immediate mode and
static VBOs (Vertex Buffer Objects) were always included in all

measurements as reference for the highest possible load on the CPU
and the highest possible framerate achievable with the shaders used,
even though the latter cannot be employed for dynamic datasets.
All diagrams include error bars to highlight rendering modes with
highly fluctuating frame rates.

We used the default driver settings, but programmatically turned
vsync off for all tests. This makes measurements less error-prone
but seems disadvantageous for the Intel-specific display driver path:
by default the drivers are in ‘multiple display performance’ mode,
which causes at least 10% performance loss with respect to ‘single
display performance mode’ (only on our Intel machine).

When working with time-dependent data sets the visualization
process can be understood as a pipeline with the following major
steps: loading and preparing a time step in main memory, upload-
ing the data from the main memory onto the GPU, and rendering the
final image. The first point, loading and preparing the data, heavily
depends on the application at hand. Data might be loaded from sec-
ondary storage, received over a network, or even computed on the
local machine. Technologies like RAID configurations, fast net-
works like infiniband, and multicore CPUs allow many optimiza-
tions of this aspect. Preprocessing can also be applied to reduce the
processing workload while loading the data. We therefore decided
to not discuss this first point in our work at hand.

It is difficult to handle and observe the second and the third
stages of this simplified pipeline independently. One of our assump-
tions is that every frame renders a different time step and therefore
needs different data. So keeping data in the GPU-side memory for
several frames is not an option. As we will discuss later (Section 3),
the layout and amount of the data to be uploaded differs depending
on the applied rendering technique. Using a more sophisticated ren-
dering approach often results in additional data to be uploaded. So
we understand these two interdependent stages of the pipeline as a
single optimization problem. Because current graphics drivers al-
most always use asynchronous data transfer, it is not meaningful to
estimate individual times for these two stages. Instead we decided
to test different combinations of uploading strategies and rendering
methods which result in different processing loads for the GPU. We
believe that we get more meaningful results this way.

However, by doing so we have to face two drawbacks: our per-
formance tests are now close to black box tests, so we cannot get
detailed information on which part of the rendering code forms the
bottle neck. To overcome this we decided to write rather small and
clean rendering codes (e. g. only about 3 to 5 OpenGL calls for
uploading data with vertex arrays). The second drawback is that we
cannot identify the sheer uploading time in milliseconds. Instead
we show the overall rendering performance in frames per second.
To exclude time required for data upload, we only use data which
fits into the main memory and which is loaded before our tests.

To understand the resulting performance we need an upper
bound: a maximum frame rate which could be reached by the ren-
dering stage alone. For defining this value, we included rendering
using static vertex buffer objects in all of our tests. These reference
values are calculated by uploading the data once into the static VBO
before the tests starts and disregards upload completely. Although
static VBOs are not viable when visualizing time-dependent data,
this gives us a reference value of the rendering load and allows us
to put the upload part into context.

This approach results in a huge amount of different measure-
ments to be performed, much more than one would want to handle
manually (For the work at hand we performed 155 tests per hard-
ware combination; 2170 test altogether). We therefore created a
tool that automatically performs all these tests, collects and aggre-
gates the results, and even performs some basic calculations (see
figure 2). Since we decided to focus on the windows platform
we chose the .NET framework as basis for this tool. By doing so
the tests can be controlled by code, written in any high-level lan-



Figure 2: User interface of our performance measuring tool. From
upper left to lower right: editing of .NET code controlling the mea-
surement process, instantiation of measuring code using parameter
tables, managing results and creation of performance tables and di-
agrams from performance results.

guage supported by the .NET framework, which can then be instan-
tiated using parameters from a table with all tests to be performed.
This includes the creation of temporary files and data for input and
output, the spawning of processes and the capture of their output
streams, which can be conveniently processed exploiting the whole
.NET functionality. For additional sanity checks, a screenshot of
the measured application can be taken and stored with the results,
such that the rendinger output of suspicious measurements can be
double-checked.

The performance results are stored in text files, easy to parse, and
can be imported into a local database of our tool. Latter allows cus-
tom queries, like filtering for specific configurations or parameters,
to generate tables and diagrams with complex layouts like multi-
level categories. Tables and diagrams can be exported in different
formats (HTML, CSV, LATEX, PDF) for ease of use. The generic
approach of our tool allows for using it with any kind of applica-
tion, like 3d model rendering or volume rendering. The application
to be tested just needs to be configurable through an input file or its
command line and must be able to output its performance to a file
or to its output stream. This tool is publicly available from our web
site1 and will probably be further extended.

Only excerpts of all the benchmarks performed can be presented
here, but the full results, including all diagrams in full page size,
are also available on our web site.

2.2 Upload Strategy

The upload mechanisms available in OpenGL range from the CPU-
intensive immediate mode (an exclusive to OpenGL) over vertex
arrays to different kinds of vertex buffer objects. Details and the
names we use to reference these mechanisms can be found in ta-
ble 1. Many publications proposing radically different visualization
approaches compare one specific mode to another or just plainly
advocate the use of one over all others – obviously any optimized
method works better than the immediate mode. However there
are many differences in data size and organization as well as side-
effects. So we wanted to take a much closer look at the whole
range of available options and compare them, keeping the partic-
ular problem in mind that we need to transport a high number of
objects with a small number of parameters to the graphics card to
generate glyphs directly on the GPU.

1http://www.vis.uni-stuttgart.de/eng/research/fields/perf/

Name OpenGL Calls Main Parameter
Description

Immediate glBegin GL POINTS
glVertex*
manual upload of individual data points

Vertex Array glVertexPointer
glDrawArrays GL POINTS
direct array data upload

VBO static glBufferData GL STATIC DRAW
glDrawArrays GL POINTS
reference rendering with only one upload (not time-dependent)

VBO stream glBufferData GL STREAM DRAW
buffer object upload meant for data ”modified once and used at
most a few times”

VBO dynamic glBufferData GL DYNAMIC DRAW
buffer object upload meant for data ”modified repeatedly and used
many times”

VBO dynmapping glMapBuffer GL WRITE ONLY
buffer object memory mapping when CPU memory layout is not
optimal

VBO dynmC Same as VBO dynmapping but includes a color array

VBO pre-int Same as VBO dynmC but CPU-side memory layout is already
optimal, by using interleaved attributes per point

Table 1: Explanation of the different uploading mechanisms used in
the first tests.

In general it can be said that with the available diagrams it is
quite easy to distinguish effects of the GPU choice (similarities
among the three machine-dependent measurement groups) from
platform problems, like lacking CPU power or bandwidth (simi-
larities inside one group). Furthermore, high fluctuation can be
observed across all diagrams to be caused by overstrained GPUs
(mainly too high a shader load in our case).

The first batch of tests was aimed at finding the optimal upload
strategy among vertex arrays and the different options for vertex
buffer objects. These benchmarks are especially important when
looking at the specification of OpenGL 3.0 [15], which deprecates
vertex array support. The tests are run with varying rasterization
load, either single-pixel points, raycast spheres on a regular grid or
overlapping raycast spheres (to cause z-replacing more frequently).

The first effect that can be observed is that vertex arrays are al-
ways at least twice as fast as any of the VBO modes when the frag-
ment processing load is negligible. It can also be observed that
GeForce 7 GPUs suffer from less overhead as for small batches of
spheres the mid-range card performs even better than the current
high-end card (see the 100k spheres diagrams in the full results).
One possible explanation is that the shader units are statically as-
signed to either vertex or fragment processing, while the drivers
seem to have to balance the use of processing units of the GeForce
8 to match the current load presented by the activated shaders. This
overhead is not present when the fragment load is minimal, so pixel-
sized points can be rendered minimally faster on the newer GPUs
(see upper diagram in figure 3).

2.3 Quantization

We also tested how much performance can be gained when upload-
ing quantized data. For example [10] suggests the use of byte quan-
tization to increase performance by reducing the upload. However
the performance gain was not set in relation to the loss of resolu-
tion. We therefore tested quantization with floats, shorts, and bytes
in our framework. The results show very clearly that shorts perform
as expected: they are nearly twice as fast as floats and thus directly
benefit from the halved data size. Even with the reduced bandwidth
requirements, vertex arrays are still at least 50% faster than the best
VBO variant, and interestingly even faster than static VBOs on an
8600GT since the GPU memory seems to be more of a limit than
the system bandwidth. A powerful host system is required to ob-
tain optimal performance from an 8800GTX, since only the Core2



1

10

100

1000

P
4

 6
8

C
o

re
2

 G
TX

2
8

0

C
o

re
2

 8
8

G
TX

C
o

re
2

 8
6

G
T

C
o

re
2

 7
9

G
T

C
o

re
2

 6
8

G
S

A
th

lo
n

 8
8

G
TX

A
th

lo
n

 8
6

G
T

A
th

lo
n

 7
9

G
T

A
th

lo
n

 6
8

G
S

P
h

e
n

o
m

 8
8

G
TX

P
h

e
n

o
m

 8
6

G
T

P
h

en
o

m
 7

9
G

T

P
h

e
n

o
m

 6
8

G
S

FPS

Immediate Vertex Array VBO static VBO stream

VBO dynamic VBO dynmapping VBO dynmC VBO pre-int

1

10

100

P
4

 6
8

C
o

re
2

 G
TX

2
8

0

C
o

re
2

 8
8

G
TX

C
o

re
2

 8
6

G
T

C
o

re
2

 7
9

G
T

C
o

re
2

 6
8

G
S

A
th

lo
n

 8
8

G
TX

A
th

lo
n

 8
6

G
T

A
th

lo
n

 7
9

G
T

A
th

lo
n

 6
8

G
S

P
h

e
n

o
m

 8
8

G
TX

P
h

e
n

o
m

 8
6

G
T

P
h

e
n

o
m

 7
9

G
T

P
h

e
n

o
m

 6
8

G
S

FPS

Immediate Vertex Array VBO static VBO stream

VBO dynamic VBO dynmapping VBO dynmC VBO pre-int

Figure 3: Upload performance for 1M 1-pixel points (top) and 1M
touching spheres (bottom) on a regular 3D grid covering 80% of the
viewport. This diagram uses logarithmic scale for better depiction,
since the data values vary by orders of magnitude. Positions are de-
fined using 3D float vectors. View port size is 5122. Since our focus
lies on the data upload, we accept the overdraw due to our large par-
ticle counts. See table 1 for a description of the shown methods. VBO
dynamic mapping means that the buffer is locked and then memcpy’d
into. The last two measurements compare dynamic mapping includ-
ing one color per vertex. For the first a high number of copy oper-
ations is needed (and as such is slower as dynamic mapping only),
while the second makes use of a pre-interleaved client-side array of
positions and colors, which is consistently faster even than dynamic
mapping only for points, but slower for spheres.

system can offer a significant performance increase when changing
the 8600GT for an 8800GTX. The upload performance of AMD
systems does not benefit particularly from this high-end card (see
figure 4). The bandwidth limitation of the Core2 system can be
seen when uploading floats (see the ‘floats’ diagrams in the full re-
sults linked previously). Switching from shorts to bytes, however,
does not yield a significant performance increase, but rather a slight
to quite marked (in the Phenom case) decrease that might be due
to alignment problems – assuming the hardware is optimized for
handling dwords. Using the generally less-advisable VBO upload,
the performance gains are of at least 25%, however still not large
enough to compensate the advantage of vertex arrays.

2.4 Billboard Geometry and Geometry Shader

As discussed earlier we understand data upload and rendering to be
interdependent, since the way of upload and the layout of the data
needs to be adapted to different rendering algorithms, while the pos-
sible choices of these algorithms depend on the available uploading

0

10

20

30

40

50

60

70

80

P
4

 6
8

C
o

re
2

 G
TX

2
8

0

C
o

re
2

 8
8

G
TX

C
o

re
2

 8
6

G
T

C
o

re
2

 7
9

G
T

C
o

re
2

 6
8

G
S

A
th

lo
n

 8
8

G
TX

A
th

lo
n

 8
6

G
T

A
th

lo
n

 7
9

G
T

A
th

lo
n

 6
8

G
S

P
h

e
n

o
m

 8
8

G
TX

P
h

e
n

o
m

 8
6

G
T

P
h

e
n

o
m

 7
9

G
T

P
h

e
n

o
m

 6
8

G
S

FPS

Vertex Array VBO static VBO stream VBO dynamic VBO dynmapping

Figure 4: Upload performance for 4M short-quantized points. Only
1 fragment is rasterized per vertex.

mechanisms. So, another series of tests was targeted at finding out
how much the raycast primitives would benefit from tightly-fitting
bounding geometry to reduce the discarded fragments outside the
glyph silhouette. This is an optimization problem where more com-
plex silhouette approximations decrease fragment processing load,
but increase vertex processing load and also might increase the data
that needs to be transferred.

As example we chose a cylinder glyph with 2:1 aspect ratio.
Three silhouette variants have been tested: a single point (thus a
screen-space axis-aligned bounding square), an object-aligned quad
uploaded as vertex array, and the corners positioned in the vertex
shader, thus trading fragment load for bus load. Finally points were
uploaded and expanded into the same quads by use of a geometry
shader. It should be noted that the geometry shader has to output
a much higher number of attributes per vertex than in comparable
approaches (e.g. the billboard generation in [12]) thus putting a
significant load on the GPU. We need a transformed camera and
light position passed to the fragment shader as well as the primitive
parameters for raycasting the glyph surface. Unfortunately, series
8 Nvidia GPUs are extremely sensitive to the total number of at-
tributes emitted, degrading the resulting performance.

0

20

40

60

80

100

120

P
4

 6
8

C
o

re
2

 G
TX

2
8

0

C
o

re
2

 8
8

G
TX

C
o

re
2

 8
6

G
T

C
o

re
2

 7
9

G
T

C
o

re
2

 6
8

G
S

A
th

lo
n

 8
8

G
TX

A
th

lo
n

 8
6

G
T

A
th

lo
n

 7
9

G
T

A
th

lo
n

 6
8

G
S

P
h

e
n

o
m

 8
8

G
TX

P
h

e
n

o
m

 8
6

G
T

P
h

e
n

o
m

 7
9

G
T

P
h

e
n

o
m

 6
8

G
S

FPS

Point Quad GeoQuad

Figure 5: Rendering performance for 500K raycast 2:1 cylinders in a
5122 viewport with varying bounding geometry. The geometry-shader
constructed quad is only available for GeForce 8 cards and newer.



Because of the aspect ratio, a fragment processing overhead of
50% when using points as bounding square is fairly common. Since
the glyph is relatively cheap to raycast, this test focuses on finding
the additional cost of integrating an improved bounding geometry
calculation into the rendering engine, as the calculation itself is also
simple. Of course with very expensive glyphs a better bounding
geometry becomes more beneficial, but also more expensive to cal-
culate. The results can be seen in figure 5. It is obvious that the use
of a geometry shader is extremely costly without a high-end card.

For series 8 Nvidia GPUs the brute-force approach with quads
offers a comparable performance on the fast systems, as the avail-
able bandwidth allows it. Only the old Athlon system benefits from
the employment of the geometry shader as it takes enough load off
the system. The current GeForce GTX280 does not lose that much
performance any more, however the single point billboard still per-
forms significantly better. From these experiments we draw the
conclusion that the current fragment processing is so carefully op-
timized that a significant overhead and the ensuing high number of
fragment kills are not an issue and thus ‘suboptimal’ point primi-
tives are still a reasonable approach. On the flip side it is obvious
that Nvidia’s implementation of the geometry shader is expensive
to use and does not provide significant benefits when used to re-
duce bus load only (even as significantly as the 75% as in our tests).
The current generation of GPUs does improve the situation much,
but not enough. Of course a very interesting alternative would be a
variant of EXT draw instanced where the primitives would be mul-
tiplicated in an inner loop (see [6]) and could be reinterpreted as
another primitive (points as quads in this case), but such an exten-
sion does not (yet?) exist.

0

20

40

60

80

100

120

140

P
4

 6
8

C
o

re
2

 G
TX

2
8

0

C
o

re
2

 8
8

G
TX

C
o

re
2

 8
6

G
T

C
o

re
2

 7
9

G
T

C
o

re
2

 6
8

G
S

A
th

lo
n

 8
8

G
TX

A
th

lo
n

 8
6

G
T

A
th

lo
n

 7
9

G
T

A
th

lo
n

 6
8

G
S

P
h

e
n

o
m

 8
8

G
TX

P
h

e
n

o
m

 8
6

G
T

P
h

e
n

o
m

 7
9

G
T

P
h

e
n

o
m

 6
8

G
S

FPS

Normal 10% size Texture Param Texture Param 10% size

Figure 6: Rendering performance for 500K raycast dipoles (com-
plex glyph consisting of two spheres and one cylinder, raycast in one
shader; see [17]) in a 5122 viewport. The ‘normal’ benchmarks em-
ploy directly uploaded parameters per primitive, while the others get
them from a texture. Also the glyphs are scaled to only 10% of their
size to show texture access cost with less dependency on the high
fragment shader load.

The last tests were used to investigate the effect of textures to
specify per-primitive-type parameters (radii, distances, colors etc.)
and access them in the vertex shader instead of uploading all pa-
rameters with every glyph. The reduced bandwidth should have
a significant impact on performance, however tests that were con-
ducted when the vertex shader could first access textures (GeForce
5 onwards) were not convincing since it incurred a significant cost
when compared to texture accesses in the fragment stage. These
results can still be reproduced with the older cards (figure 6), but
with the newer generations of graphics cards, things have changed.
Parameters stored in textures never cause performance loss. The

current generation actually can benefit from local parameters in ev-
ery situation, while the 8800GTX only benefits in light shader load
situations or on machines with limited CPU resources (especially
on the Athlon). In the next section we will apply our findings to a
real-world problem and discuss the data upload optimizations.

3 COMPOUND GLYPHS

In many scientific areas, such as mechanics, thermodynamics, ma-
terials, and biotechnology, classical simulation methods based on
continuous data structures still fail to produce satisfactory results
or even fail to correctly model the situation to be studied. Molecu-
lar dynamics simulations are rapidly becoming a wide-spread alter-
native, and due to the cost-effectiveness of ever larger COTS clus-
ters, their processing power, and their availability as client-site in-
frastructure, the necessary computations can be performed without
heavy effort and within acceptable timeframes.

While simple molecular models can use a single mass center,
more complex ones may consist of multiple mass centers and mul-
tiple and optionally directed charges. When analyzing such datasets
visualization allows the scientists to observe the interactions of in-
dividual molecules and helps to understand the simulation itself.
Not only are the positions and energy levels of interest, but also
the orientations and the distances between their mass centers and
charged elements. A crucial problem is introduced by the large
amounts of particles which need to be rendered interactively. This
problem gets even worse when the complexity of the molecular
model is increased. Accordingly complex glyphs must thus be used
to represent multiple mass centers and charges. While using GPU-
based raycasting or texture-based approaches for rendering geomet-
ric primitives is common practice, these techniques cannot be eas-
ily applied to complex or compound glyphs, that is glyphs consist-
ing of multiple graphical primitives like spheres or cylinders. The
straightforward approach of rendering these graphical primitives,
which is also addressed in this paper, easily increases the number
of objects to be rendered by at least one order of magnitude.

3.1 Modeling
To create a meaningful visualization the molecules’ visual represen-
tation must match the elements of the molecular model employed
in the simulation. However the visual model for the molecules must
also be chosen reasonably, as we cannot put an arbitrarily high load
on the GPU. Usually the mass centers of a molecule are shown as
spheres. The van-der-Waals radius is often displayed, since it is
a good representation of the influence range of the mass element.
This, however, results in rather dense representations occluding po-
tentially interesting features like localized, directed charges. We
therefore propose a more sparse representation, showing the struc-
ture of the molecule and emphasizing the charges, which is based
on the classical (ball-and-)stick metaphor, as known from the fields
of chemistry and biology.

These glyphs are constructed out of several spheres and cylin-
ders with appropriate parameters. The principal structure of the
molecules is conveyed by a stick representation using spheres and
cylinders with the same radius. To easier distinguish molecule
types, all uncharged elements in one molecule share the same color.
Additional elements represent the charges: spheres indicate point
charges, and two spheres with two cylinders show a directed charge
using the metaphor of a bar magnet. The radii of these elements are
chosen proportionally to the strength of the charges they represent,
and the type is shown by the color (green for positive charges, red
for negative ones). The ethanol molecule (figure 7, left) consists of
four spheres and two cylinders (a third cylinder, located between the
two upper spheres, is removed in an optimization step because it is
completely occluded). The R227ea molecule (heptafluoropropane;
figure 7, right) is constructed from twelve spheres and eleven cylin-
ders.



Figure 7: Two complex molecules modeled with spheres and cylin-
ders. Left: an ethanol molecule with the orange stick representing the
carbon backbone and three spheres showing point charges; Right:
a heptafluoropropane molecule with a blue stick representation of
the carbon and flourine atoms and a bar magnet showing a directed
quadrupolar charge.

Of course, other representations for these molecules could also
be applied. Our framework is flexible in the number of elements
a glyph is composed of and in the way these elements are placed
and parameterized. Other graphical primitives, for example cones
or ellipsoids, could be used as well. The primitives are placed and
oriented in a particle-centered coordinate system. The center posi-
tion and orientation as the only parameters of each particle are then
used to construct its final visual representation.

3.2 Rendering

All graphical primitives are rendered using GPU-based raycasting
of implicit surfaces as presented in [9] and [11]. [17] showed that it
is possible to construct even more complex glyphs in a single ray-
casting shader, however, this approach is very limited and cannot
be generalized to arbitrary compound glyphs without serious per-
formance drawbacks. Since we work on time-dependent data and
use interpolation of positions and orientations to generate a smooth
animation, the necessary calculations for each image must be lim-
ited to achieve interactive frame rates.

The naı̈ve approach is to transfer all graphical primitives from
their local glyph-centric coordinate systems into a common world
coordinate system and then render them. This recalculation is per-
formed on the CPU to keep the raycasting shaders as simple as
possible to set a baseline reference for upcoming optimized ap-
proaches. The additional data can be directly sent to the graphics
card by using immediate mode functions or it can be stored linearly
in main memory for vertex array transfer. As the results section 3.3
shows, the rendering performance of this approach is quite unac-
ceptable.

Therefore, we moved these calculations to the graphics card. The
mechanisms of instancing seemed suitable. However, hardware
support for OpenGL instancing requires shader-model-4-capable
hardware. To be able to use this approach on older cards too, we
used vertex buffer objects to emulate instancing (as is also sug-
gested in [16]). The idea is to upload all particle data once per frame
and re-use it once per graphical primitive needed for the specific
molecule glyph. We change only a single uniform value as primitive
index (replacing gl InstanceID, see below). The parameters of a
primitive (such as relative coordinates, radius, and color) are loaded
from two parameter textures into the vertex shader. This shader
will then recalculate the primitives’ positions using the orientation
quaternion and the world positions of the molecules. The results
show that this approach performs very well with our molecule mod-
els consisting of 6 and 21 graphical primitives.

However, the question remains whether hardware-supported in-
stancing or geometry shaders could do an even better job on cur-
rent graphics cards. The latter approach uploads only one point
per molecule and then emits multiple graphical primitives from
the geometry shader unit. The parameters for these glyph ele-

Name Description
* Entries from table 1; All these modes use simple shaders draw-

ing one graphical primitive each.

Geo combo Uses vertex array upload (one vertex per molecule) and one ge-
ometry shader for all graphical primitives.

Geo primitive Uses one geometry shader per primitive type and uploads (one
vertex per molecule) once per shader using the vertex array
mechanism.

Geo VBO static Works like Geo primitive but uses the described VBO upload
with GL STATIC DRAW

Geo VBO stream Works like Geo primitive but uses the described VBO upload
with GL STREAM DRAW

Geo VBO dynamic Works like Geo primitive but uses the described VBO upload
with GL DYNAMIC DRAW

Instancing combo Uses the extension GL EXT draw instanced and
glDrawArraysInstancedEXT for data upload, and
uses one geometry shader for all graphical primitives, analo-
gous to Geo combo

Instancing primitive Works like Instancing combo but uses simple shaders (one for
each graphical primitive) and uploads the data multiple times,
analogous to Geo primitive.

Table 2: Explanation of the different uploading mechanisms in addi-
tion to the ones described in table 1.

ments are again retrieved from textures. However, this requires a
fragment shader capable of rendering all graphical primitives. Al-
though some elements have some aspects in common and a com-
bined shader could be optimized, this is not true for the generic
approach of combining arbitrary glyph elements. To keep the max-
imum flexibility, the shader must be some sort of concatenation of
the primitive shaders enclosed by program flow control, which is
still expensive in the fragment processing stage. When using a ge-
ometry shader to produce the individual elements, this flow control
is also needed for the code partition of the geometry shader which
performs the silhouette approximation. So using this approach with
our particular glyph comes with the overhead of two large ifs (one
per stage).

To avoid this overhead, which is fatal as our results show (see
figure 8), a separate geometry shader for each graphical primitive
is employed. Since the glyph elements do not require alpha blend-
ing, we only need one shader switch per primitive type, and all the
shaders get rid of the branching. However, this creates overhead
again since all the molecule data needs to be uploaded multiple
times per frame (one time for each shader, if at least one molecule
contains all element types) when using vertex arrays. This again is
a fitting application for vertex buffer objects: upload the data only
once, but use it twice (in case of two element types). However, sec-
tion 3.3 demonstrates the cost of employing a geometry shader is
still too high to be compensated by optimized upload. This could
change with future graphics card generations, if the penalty for out-
putting many attributes is reduced.

The second alternative on current graphics cards would be in-
stancing [6]. This OpenGL extension allows to input the same
data (a vertex array or vertex buffer object) several times into
the OpenGL pipeline with just a single call. We use this mecha-
nism to multiply the input molecules by the number of their prim-
itive elements and employ the built-in instance index to look up
the per-primitive parameters from the texture. Analogously to the
two approaches using vertex arrays, instancing can use one com-
plex shader capable of raycasting all graphical primitives using if
clauses or the calls can be separated to use cheaper shaders. This
approach results in performance values very similar to the results
of the emulated instancing using VBOs. It therefore is currently
unclear what the advantages of using this extension could be.



0.1

1

10

100

1000
P

4
 6

8

C
o

re
2

 G
TX

2
8

0

C
o

re
2

 8
8

G
TX

C
o

re
2

 8
6

G
T

C
o

re
2

 7
9

G
T

C
o

re
2

 6
8

G
S

A
th

lo
n

 8
8

G
TX

A
th

lo
n

 8
6

G
T

A
th

lo
n

 7
9

G
T

A
th

lo
n

 6
8

G
S

P
h

e
n

o
m

 8
8

G
TX

P
h

e
n

o
m

 8
6

G
T

P
h

en
o

m
 7

9
G

T

P
h

e
n

o
m

 6
8

G
S

FPS

Immediate Vertex Array VBO static VBO stream

VBO dynamic Geo combo Geo primitive Geo VBO static

Geo VBO stream Geo VBO dynamic Instancing combo Instancing primitive

0.01

0.1

1

10

P
4

 6
8

C
o

re
2

 G
TX

2
8

0

C
o

re
2

 8
8

G
TX

C
o

re
2

 8
6

G
T

C
o

re
2

 7
9

G
T

C
o

re
2

 6
8

G
S

A
th

lo
n

 8
8

G
TX

A
th

lo
n

 8
6

G
T

A
th

lo
n

 7
9

G
T

A
th

lo
n

 6
8

G
S

P
h

e
n

o
m

 8
8

G
TX

P
h

e
n

o
m

 8
6

G
T

P
h

e
n

o
m

 7
9

G
T

P
h

e
n

o
m

 6
8

G
S

FPS

Immediate Vertex Array VBO static VBO stream

VBO dynamic Geo combo Geo primitive Geo VBO static

Geo VBO stream Geo VBO dynamic Instancing combo Instancing primitive

Figure 8: Performance for two compound glyph datasets (top:
100,000 Molecules; bottom: 1,000,000 Molecules). This diagram
uses logarithmic scale for better depiction, since the data values vary
by orders of magnitude. See table 2 for descriptions on the different
uploading methods.

3.3 Rendering Performance

The different methods of creating compound glyphs for complex
molecules described above were tested on the same machines
used for the preliminary measurements in section 2. We used
two datasets from molecular dynamics simulations employing the
Lennard-Jones model. The first dataset contains 85,000 ethanol
molecules and 15,000 heptafluoropropane molecules. The second
dataset uses the same molecule mixture under the same thermody-
namical conditions but uses ten times more molecules of each type.
Using the same molecule representation as described in section 3
this results in a total number of 825,000 and 8,250,000 graphical
primitives (6∗850,000+21∗150,000).

Table 3 and figure 8 show the performance values of both
datasets with our approaches. On the high-end cards the usage of
vertex buffer objects to emulate instancing results in the best per-
formance, although the instancing extension is just slightly slower.

It is obvious that shader programs should be kept as simple as
possible (branching should still mostly be avoided). On cards prior
to the GTX280 even the immediate mode rendering is faster than
using the combined geometry shader. The two methods using the
primitive shaders are either much faster or at least not significantly
slower than the ones with the complex shaders.

Another interesting fact is that the frame rates of the instancing-
based rendering modes are quite constant for the 100K dataset but
strongly varying for the 1M dataset (on all cards except for the
GeForce 8800) – see the error bars in the lower diagram of fig-
ure 8. We interpret this as an indication that the overall GPU load

is at its limit for the older cards. The current high-end card also
exhibits extremely unstable frame rates with large data sets, which
is probably due to the immature driver code.

4 CONCLUSION AND FUTURE WORK

In this work we presented an automated, flexible tool for perfor-
mance measurement series. We employed it to produce concrete
values for all the different uploading mechanisms OpenGL offers
for time-dependent point-based data. Based on that data we also
demonstrated a way of representing molecules as compound glyphs
showing backbone atoms as well as point and directed charges. To
be able to render huge time-dependent datasets we also evaluated
different strategies of constructing these compound glyphs for opti-
mal performance for a wide range of workstation computers using
current graphics cards. Our contribution is a detailed quantification
of the performance factors that affect GPU-based glyph and splat
rendering. We believe that the findings presented can be applied to
a wide range of applications beyond than the ones presented here.

For the datasets we used vertex arrays still are the best upload-
ing mechanism available for basic glyphs. We attribute this to the
fact that it comes with the least overhead compared to dynamic or
streaming vertex buffer objects. Another interpretation would be
that vertex arrays allow the GPU to start rendering immediately
after the data transfer begins, while VBOs need to be transferred
entirely before rendering, resulting in a marked performance disad-
vantage when no re-use takes place. The deprecation of vertex ar-
rays in OpenGL 3.0 is very disappointing, since there is no obvious
successor. No vertex buffer type has clearly superior performance
over the others: on the Athlon GeForce 8800 system streaming ver-
tex buffer objects are faster, but on the Core2, GeForce 8600 system
dynamic vertex buffer object are faster, for example. A part of the
‘common knowledge’ about the OpenGL is confirmed: mapping a
dynamic VBO is advantageous if the data layout in memory is sub-
optimal, offering an ideal alternative to the costly immediate mode.
When linearly organized data is available, the direct-upload VBOs
have less overhead and result in better performance.

Our measurements showed that the highly situational perfor-
mance of geometry shaders was much improved with the GeForce
GTX280, offering a viable option for the construction of bounding
geometry that more tightly fits a glyph than basic points.

For compound but rigid glyphs the best option overall is to use
any of the instancing approaches. Additionally the parameters of
the primitives should be placed in parameter textures, since this
has at least potentially positive impact on the performance on all
hardware combinations we tested.

We want to add further measurement series to extend our find-
ings to ATI graphics cards and especially NVIDIA Quadro cards.
An explicit test of the whole range of DirectX upload strategies
is also planned. After making our measurement tool publicly avail-
able, we hope to collect performance results for an even wider range
of systems and applications with the support of other users. Our
measuring tool will be extended and improved to further streamline
the workflow of such performance evaluations.

ACKNOWLEDGEMENTS

This work is partially funded by Deutsche Forschungsgemeinschaft
(DFG) as part of Collaborative Research Centre SFB 716.

REFERENCES

[1] C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. Texmol: Inter-
active visual exploration of large flexible multi-component molecular
complexes. In VIS ’04: Proceedings of the conference on Visualiza-
tion ’04, pages 243–250, 2004.

[2] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality
surface splatting on today’s gpus. In Proceedings of Point-Based
Graphics ’05, pages 17–141, 2005.



machine Im- Vertex VBO VBO VBO Geo Geo Geo VBO Geo VBO Geo VBO Instancing Instancing
mediate Array static stream dynamic combo primitive static stream dynamic combo primitive

100,000 Molecules
P4 68 1.69 2.08 7.14 7.14 7.14 n/a n/a n/a n/a n/a n/a n/a
Core2 GTX280 2.87 5.52 105.99 105.61 106.25 22.46 49.53 47.30 47.32 47.32 89.66 104.20
Core2 88GTX 3.19 5.94 106.73 106.73 106.74 1.98 6.41 6.37 6.37 6.36 92.88 103.30
Core2 86GT 3.20 5.96 31.06 31.06 31.06 0.50 1.34 1.34 1.34 1.34 26.73 32.23
Core2 79GT 3.19 5.29 27.72 27.72 27.73 n/a n/a n/a n/a n/a n/a n/a
Core2 68GS 3.24 3.75 9.59 9.59 9.59 n/a n/a n/a n/a n/a n/a n/a
Athlon 88GTX 2.40 4.88 96.00 96.38 96.19 1.90 6.35 6.27 6.27 6.27 56.67 56.32
Athlon 86GT 2.33 4.95 30.07 30.06 30.06 0.49 1.29 1.29 1.29 1.29 26.74 32.23
Athlon 79GT 2.35 4.64 27.02 27.00 27.00 n/a n/a n/a n/a n/a n/a n/a
Athlon 68GS 2.32 3.31 9.51 9.51 9.51 n/a n/a n/a n/a n/a n/a n/a
Phenom 88GTX 2.91 5.59 107.57 107.48 106.80 1.97 6.40 6.36 6.37 6.37 93.03 93.03
Phenom 86GT 2.90 5.49 31.12 31.12 31.12 0.50 1.34 1.34 1.34 1.34 26.74 32.24
Phenom 79GT 2.89 5.12 27.34 27.34 27.34 n/a n/a n/a n/a n/a n/a n/a
Phenom 68GS 2.88 3.63 9.55 9.55 9.55 n/a n/a n/a n/a n/a n/a n/a

1,000,000 Molecules
P4 68 0.04 0.05 0.08 0.08 0.08 n/a n/a n/a n/a n/a n/a n/a
Core2 GTX280 0.10 0.14 7.63 7.78 7.88 0.36 2.07 1.84 1.84 1.87 6.48 7.24
Core2 88GTX 0.11 0.16 10.12 10.12 10.12 0.09 0.17 0.17 0.17 0.17 9.10 9.12
Core2 86GT 0.11 0.16 0.72 0.72 0.72 0.06 0.07 0.07 0.08 0.07 0.52 0.89
Core2 79GT 0.11 0.15 0.54 0.54 0.54 n/a n/a n/a n/a n/a n/a n/a
Core2 68GS 0.11 0.12 0.23 0.23 0.23 n/a n/a n/a n/a n/a n/a n/a
Athlon 88GTX 0.08 0.11 9.05 8.99 9.05 0.07 0.13 0.13 0.13 0.13 3.37 3.44
Athlon 86GT 0.08 0.11 0.45 0.44 0.45 0.05 0.06 0.06 0.06 0.06 0.40 0.74
Athlon 79GT 0.08 0.11 0.40 0.40 0.40 n/a n/a n/a n/a n/a n/a n/a
Athlon 68GS 0.08 0.09 0.17 0.17 0.17 n/a n/a n/a n/a n/a n/a n/a
Phenom 88GTX 0.10 0.15 10.15 10.12 10.15 0.08 0.16 0.16 0.16 0.16 7.99 7.92
Phenom 86GT 0.10 0.15 0.68 0.67 0.67 0.06 0.07 0.07 0.07 0.07 0.48 0.84
Phenom 79GT 0.10 0.14 0.49 0.49 0.50 n/a n/a n/a n/a n/a n/a n/a
Phenom 68GS 0.10 0.11 0.21 0.21 0.21 n/a n/a n/a n/a n/a n/a n/a

Table 3: The frames per second performance values for the two real-world datasets (upper part: 100,000 molecules; lower part: 1,000,000
molecules).

[3] M. Botsch and L. Kobbelt. High-quality point-based rendering on
modern GPUs. In Pacific Graphics’03, pages 335–343, 2003.

[4] I. Buck, K. Fatahalian, and P. Hanrahan. Gpubench: Evaluating gpu
performance for numerical and scientific applications. In Poster Ses-
sion at GP2 Workshop on General Purpose Computing on Graphics
Processors, 2004. http://gpubench.sourceforge.net/.

[5] M. Chuah and S. Eick. Glyphs for software visualization. Pro-
gram Comprehension, 1997. IWPC ’97. Proceedings., Fifth Iterna-
tional Workshop on, pages 183–191, Mar 1997.

[6] GL EXT draw instanced Specification. http://opengl.org/
registry/specs/EXT/draw_instanced.txt.

[7] M. Eissele and J. Diepstraten. GPU Performance of DirectX 9 Per-
Fragment Operations Revisited, pages 541–560. Shader X4: Ad-
vanced Rendering with DirectX and OpenGL. Charles River Media,
2006.

[8] S. Grottel, G. Reina, J. Vrabec, and T. Ertl. Visual Verification and
Analysis of Cluster Detection for Molecular Dynamics. In Proceed-
ings of IEEE Visualization ’07, pages 1624–1631, 2007.

[9] S. Gumhold. Splatting illuminated ellipsoids with depth correction. In
Proceedings of 8th International Fall Workshop on Vision, Modelling
and Visualization, pages 245–252, 2003.

[10] M. Hopf and T. Ertl. Hierarchical Splatting of Scattered Data. In
Proceedings of IEEE Visualization ’03. IEEE, 2003.

[11] T. Klein and T. Ertl. Illustrating Magnetic Field Lines using a Discrete
Particle Model. In Workshop on Vision, Modelling, and Visualization
VMV ’04, 2004.

[12] O. D. Lampe, I. Viola, N. Reuter, and H. Hauser. Two-level approach
to efficient visualization of protein dynamics. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1616–1623, Nov./Dec.
2007.

[13] Markus Gross and Hanspeter Pfister, editor. Point-Based Graphics.
Morgan Kaufmann Publishers, 2007.

[14] T. Ochotta, S. Hiller, and D. Saupe. Single-pass high-quality splatting.
Technical report, University of Konstanz, 2006. Konstanzer Schriften
in Mathematik und Informatik 219.

[15] OpenGL 3.0 Specification. http://www.opengl.org/
registry/doc/glspec30.20080811.pdf.

[16] M. Pharr and R. Fernando. GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation
(Gpu Gems). Addison-Wesley Professional, 2005.

[17] G. Reina and T. Ertl. Hardware-Accelerated Glyphs for Mono- and
Dipoles in Molecular Dynamics Visualization. In Proceedings of EU-
ROGRAPHICS - IEEE VGTC Symposium on Visualization Eurovis
’05, 2005.

[18] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point ren-
dering system for large meshes. In Proceedings of ACM SIGGRAPH
2000, pages 343–352, 2000.

[19] M. Sainz, R. Pajarola, and R. Lario. Points Reloaded: Point-Based
Rendering Revisited . In SPBG’04 Symposium on Point - Based
Graphics 2004, pages 121–128, 2004.

[20] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge
cueing for enhancing real time molecular visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5):1237–1244,
2006.

[21] R. Toledo and B. Lévy. Extending the graphic pipeline with new gpu-
accelerated primitives. Tech report, INRIA Lorraine, 2004.


