Information for

Logo VISUS

HONK | Industrialisierung von hochauflösender Numerik für komplexe Strömungsvorgänge in hydraulischen Systemen

Die numerische Simulation ist heute eine unverzichtbare Methode für sämtliche Forschungs- und Entwicklungsarbeiten im Bereich der Ingenieuranwendungen. Sie wurde zu einer Schlüssel-Technologie für die Verbesserung der Wirtschaftlichkeit, Umweltverträglichkeit und Sicherheit neu entwickelter Systeme und trägt damit entscheidend zur Wettbewerbsfähigkeit der deutschen Industrie bei. Eine ganze Reihe komplexer Strömungsprobleme in den Anwendungen stellen aber immer noch Herausforderungen für heutige und künftige Software-Werkzeuge dar. So müssen zur treffsicheren Auslegung von Fertigungsprozessen und zur Funktionsauslegung hydraulischer Systeme und Komponenten aufwändige Strömungssimulationen eingesetzt werden. Treten bedingt durch die Auflösung unterschiedlicher physikalischer Vorgänge unterschiedliche Zeit- und Raumskalen auf, können oft keine Simulationen in vertretbaren Rechenzeiten durchgeführt werden, die alle wichtigen physikalischen Phänomene einschließen. Der hohe Rechenaufwand der Simulationen lässt hier somit nur eingeschränkte Vorauslegungen zu. Eine Lösung dieser Probleme kann hier nur die Entwicklung einer effizienten ganzheitlichen Simulationsumgebung für Mehrskalenprobleme darstellen, die gemeinsame Entwicklungen sowohl in physikalischer und numerischer Modellierung als auch in Simulationstechnik, Visualisierung und effizienter Ausnutzung neuer Hardware-Komponenten nötig macht.

Die angestrebte Simulation von Systemen mit vielen Freiheitsgraden auf Höchstleistungsrechnern bringt neben den Herausforderungen an eine angepasste Numerik der Gleichungslöser auch Anforderungen an die Methoden der Analyse und Visualisierung der entstehenden Datenmengen mit sich. Dabei können die aus Discontinuous Galerkin (DG) Verfahren resultierenden Lösungen mittels traditioneller, auf Resampling beruhender, Visualisierungsmethoden nur unzureichend analysiert werden. Es wurden bereits Methoden vorgestellt, welche DG-Daten direkt visualisieren und somit effizienter und genauer sind. Diese Forschungscodes laufen aber bisher nur auf isolierter Grafikhardware parallel. Die hohe raumzeitliche Komplexität und Größe der in diesem Vorhaben angestrebten Simulationsdaten erfordern eine engere Integration von Visualisierung und Simulation, welches auch In-Situ-Visualisierung erlaubt. Dies bedingt neue Strategien zur Lastverteilung zwischen Simulation und Visualisierung sowie neue Visualisierungstechniken für die in diesem Projekt untersuchten spezifischen physikalischen Phänomene. Diese sollen einerseits dem Debugging und der Validierung dienen, andererseits stellen sie in den Anwendungen notwendige Werkzeuge zur Analyse dar.