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Abstract
We propose a novel approach for a dense texture-based
visualization of vector fields on curved surfaces. Our tex-
ture advection mechanism relies on a Lagrangian parti-
cle tracing that is simultaneously computed in the phys-
ical space of the object and in the device space of the
image plane. This approach retains the benefits of pre-
vious image-space techniques, such as output sensitiv-
ity, independence from surface parameterization or mesh
connectivity, and support for dynamic surfaces. At the
same time, frame-to-frame coherence is achieved even
when the camera position is changed, and potential in-
flow issues at silhouette lines are overcome. Noise in-
put for texture advection is modeled as a solid 3D tex-
ture and constant spatial noise frequency on the image
plane is achieved in a memory-efficient way by appro-
priately scaling the noise in physical space. For the final
rendering, we propose color schemes to effectively com-
bine the visualization of surface shape and flow. Hybrid
physical/device-space texture advection can be efficiently
implemented on GPUs and therefore supports interactive
vector field visualization. Finally, we show some exam-
ples for typical applications in scientific visualization.

Key words: Flow visualization, vector field visualization,
surface visualization, textures, GPU programming.

1 Introduction

Vector field visualization plays an important role in com-
puter graphics and in various scientific and engineering
disciplines alike. For example, the analysis of CFD (com-
putational fluid dynamics) simulations in the aerospace
and automotive industries relies on effective visual rep-
resentations. Another field of application is the visu-
alization of surface shape by emphasizing the princi-
pal curvature vector fields [5]; hatching lines are often
guided by the principal curvature directions for the non-
photorealistic rendering of pen-and-ink drawings.

In this paper, we focus on vector—or flow—
visualization techniques that compute the motion of
massless particles advected along the velocity field to ob-
tain characteristic structures like streamlines or streak-

Figure 1: Flow visualization on a curved surface for an
automotive CFD simulation.

lines. The fundamental problem of finding appropriate
initial seed points can be overcome by a dense represen-
tation, i.e., by densely covering the domain with particle
traces. This approach gives good results for planar 2D do-
mains, but has intrinsic problems of clutter and occlusion
in 3D [8]. Flow visualization on curved 2D hypersurfaces
through the complete 3D data set, however, avoids most
of the occlusion problems and provides a more flexible
representation than on planar slices. Interesting fluid be-
havior often occurs in the direct neighborhood of a curved
boundary and can be displayed by this 2.5D approach. A
typical example is the visualization of the air flow around
an aircraft wing or an automobile (see Figure 1).

Texture-based visualization techniques for 2D planar
flow can be extended to 2.5D by considering a C-space
(computational space) approach. Here, a parameteriza-
tion of the surface has to be known, and all computations
take place in the Cartesian 2D coordinate system. How-
ever, many surfaces are not equipped with a parameter-
ization and thus do not allow for a direct application of
C-space methods.

In this paper, we rather follow an approach guided by
image-space computations. Our technique is inspired and
strongly influenced by the recent work by Laramee et
al. [11] and Van Wijk [21], who apply texture advection
and image-based flow visualization on the image plane.



The image-space approach has a number of important ad-
vantages: Neither the parameterization nor the connec-
tivity information of a surface mesh are required; it is
well supported by the GPU (Graphics Processing Unit);
it does not need sophisticated data structures and is rather
simple to implement; the main part of the algorithm—
advection and blending—is output-sensitive, i.e., the per-
formance is determined by the viewport size. Unfortu-
nately, the restriction to pure image-space texture advec-
tion also causes some disadvantages: Frame-to-frame co-
herence cannot be guaranteed when the camera position
is changed; silhouette lines are inflow regions on the im-
age plane, and it is difficult to maintain constant contrast
in these inflow areas; silhouette lines have to be identified
by an image-space edge detector; only an exponential fil-
ter kernel is supported for Line Integral Convolution.

The idea of this paper is to combine the image-space
methods with some aspects of object-space methods. The
main contributions are: First, a hybrid Lagrangian par-
ticle tracing in physical and device spaces that retains
all aforementioned benefits of the image-space approach
and avoids its disadvantages. Second, a solid texturing
of the input 3D noise which fixes the noise structure in
object space and thus guarantees temporal coherence un-
der camera motion while, at the same time, a constant
spatial noise frequency is maintained on the image plane.
Third, an approach to effectively combine the visualiza-
tion of surface shape and flow by using appropriate color
schemes. Fourth, a mapping of our algorithm to GPUs,
which leads to interactive rendering. Finally, we demon-
strate how this approach can be used for typical applica-
tions in scientific visualization.

2 Previous Work

A large body of research has been published on noise-
based and dense vector field visualization. For a com-
prehensive presentation we refer to the review articles by
Sanna et al. [17] and Hauser et al. [6]. Spot noise [19]
and Line Integral Convolution (LIC) [2] are early texture-
synthesis techniques for dense flow representations, and
serve as the basis for many subsequent papers that pro-
vide a variety of extensions and improvements to these
original methods. Many recent techniques for unsteady
2D flow are based on the closely related concept of tex-
ture advection, the basic idea of which is to represent a
dense collection of particles in a texture and transport this
texture along the vector field [16]. Lagrangian-Eulerian
Advection (LEA) [10] visualizes unsteady flows by a La-
grangian integration of particle positions and a Eulerian
advection of particle colors. Image Based Flow Visual-
ization (IBFV) [20] is a variant of 2D texture advection
in which a second texture is blended into the advected

texture at each time step.
Since dense representations need a large number

of computations, graphics hardware can often be ex-
ploited to increase visualization performance. For exam-
ple, GPU-based implementations are known for steady
flow LIC [7], for different techniques for unsteady 2D
flows [9, 20, 23], and for 3D vector fields [13, 18, 24].

The first techniques for dense flow visualization on
curved surfaces were based on 2D curvilinear grids,
which directly provide a parameterization that can be
used for particle tracing in C-space. For example, LIC
can be applied in this fashion on curvilinear grids [3].
The effects of different cell sizes in such grids can be
compensated by using multi-granularity input noise [14].
An arbitrary surface can always be approximated by tri-
angulation and, therefore, visualization on generic curved
surfaces usually relies on a triangle mesh representation.
Battke et al. [1] describe a steady flow LIC technique
for triangle surfaces that uses the mesh connectivity to
trace a particle path from one triangle to an adjacent one
and that builds a packing of triangles into texture mem-
ory. Mao et al. [15] avoid this triangle packing by tightly
connecting the LIC computation in texture space with
the view-dependent rendering of the mesh; however, they
also need the connectivity information for particle trac-
ing. As already mentioned in the introductory section,
Van Wijk [21] and Laramee et al. [11] propose an image-
space approach for texture advection on curved surfaces
which has directly influenced the development of our vi-
sualization technique.

3 Lagrangian Particle Tracing on Surfaces

In this paper, a Lagrangian approach to particle tracing is
adopted. Each single particle can be identified individu-
ally and the properties of each particle depend on time t.
The path of a single massless particle is determined by
the ordinary differential equation

dr(t)
dt

= u(r(t), t) , (1)

where r(t) describes the position of the particle at time
t and u(r, t) denotes the time-dependent vector field. In
the case of a flat 2D or 3D domain, the points or vectors
(marked as boldface letters) are 2D or 3D, respectively.

In this paper, we focus on domains that can be rep-
resented as 2D curved manifolds embedded in flat 3D
space. Curved nD manifolds are often described by an
atlas, which is the collection of charts; a chart consists
of a coordinate system that is a subset of the Cartesian
space R

n, and of a mapping from the manifold to the co-
ordinate system. Finding an appropriate set of charts—a
set of parameterizations—for an arbitrary 2D manifold is



a formidable and expensive task that is part of ongoing
research (see, for example, the papers [5, 12]). We do
not want to assume or construct a parameterization and
therefore choose another representation for the embed-
ded manifold: just the set of points r in R

3 that belong
to the surface. To build a tangential vector field, the nor-
mal component (along the normal direction of the hyper-
surface) of the 3D vector u has to vanish. A tangential
vector field can either come from a direct construction,
such as a fluid flow computation on a surface, or from the
projection of a non-tangential 3D vector field. For a tan-
gential vector field, Eq. (1) leads to curves that stay on
the surface.

So far, the vector and point quantities were given with
respect to physical space (P-space). Along the rendering
pipeline of computer graphics, however, a large number
of additional coordinate systems is used. In GPU-based
interactive rendering, a vertex of the input geometry is
usually transformed from its original object coordinates
into subsequent world, eye, and clip coordinates by re-
spective affine or projective transformations. After ras-
terization, a fragment undergoes the transformation from
clip space into normalized device coordinates, via a ho-
mogeneous division by the w clip coordinate. In this pa-
per, the view frustum is assumed to be [0,1]3 in normal-
ized device space (D-space).

In this notation, P-space coordinates are identical to
their object coordinates. For a stationary surface geome-
try, P-space and world coordinates are related by a con-
stant affine transformation that is described by the model
matrix. On the one hand, a P-space approach is well-
suited for representing everything that should be fixed
with respect to object coordinates: For example, the noise
input for LIC-like convolution (more details on specify-
ing such a noise texture are given in Section 4) should be
modeled in P-space; in this way, a frame-to-frame coher-
ent display of the input noise is automatically achieved
even when the virtual camera is moved. On the other
hand, D-space is the natural representation for everything
that is directly related to, or governed by aspects of, the
image plane. For example, a dense vector field visualiza-
tion is ideally computed on a per-pixel basis with respect
to the image plane in order to achieve an output-sensitive
algorithm and a uniform density on the image plane.

The basic idea of our algorithm is to combine the ad-
vantages of P-space and D-space representations by com-
puting particle paths in both spaces simultaneously and
tightly connecting these two points of view. Figure 2 il-
lustrates the coupled P/D-space approach. The starting
point is Eq. (1), which is solved by explicit numerical in-
tegration. A first-order explicit Euler scheme is employed
in our current implementation, but other, higher-order
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Figure 2: Coupled D-space (left) and P-space (right) rep-
resentations of the same scene. The y axes are left out to
simplify the illustration.

schemes (e.g., Runge-Kutta) could be used as well. The
numerical solver works with P-space coordinates rP ≡ r
and the original tangential vectors uP ≡ u. After each in-
tegration step, the corresponding position in D-space is
computed by applying the model, view, projection, and
homogeneous division operations, TMVPH:

rD = TMVPH(rP) . (2)

An important point is that the vector field is no longer
given on a P-space but a D-space domain, i.e., we have
different representations for the vector components and
the associated point on the surface. This alternative de-
scription with respect to D-space is given by vP(rD, t) =
uP(T−1

MVPH(rD), t). The differential equation then be-
comes

drP(t)
dt

= vP(rD(t), t) , (3)

in combination with Eq. (2).
The crucial step in making the integration process effi-

cient is to reduce the 3D representation of the quantities
that depend on rD to a 2D representation with respect to
the xD and yD components of rD. Since the flow fields
are assumed to live on opaque surfaces, only the closest
surface layer is considered and the zD component of rD

(i.e., the depth component) can be neglected.
The goal of all LIC-oriented techniques is to generate

a texture I by starting particle traces at each texel and
computing the convolution integral along these traces.
This texture can be parameterized by 2D device coor-
dinates because only the visible surface parts are of in-
terest. Since each particle trace can be uniquely identi-
fied by its corresponding seed point at the starting time
t0, the P-space positions along a path can be labeled by
the x and y device coordinates of the seed point (x0

D,y0
D):

rP(t − t0;x0
D,y0

D). Finally, the vector field with respect to



// Initialize the 2D texture for vP(rD):
while rendering the surface with attached vector field:

make vectors tangential
transform vectors to device coordinates
→ write result into tex2D vP(x0

D,y0
D)

// Set the 2D texture for the initial positions rP:
render surface and write rP into 2D texture tex2D rP(x0

D,y0
D)

// Initialize the convolution texture:
tex2D I(x0

D,y0
D) ← 0

// Iterate explicit solver until maximum length is reached:
for i=1 to imax

for each visible texel (x0
D,y0

D):
// Transform from P-space to D-space
(xD,yD) ← TMVPH(tex2D rP(x0

D,y0
D))

// Single Euler integration step:
tex2D rP(x0

D,y0
D) ← tex2D rP(x0

D,y0
D)

+ ∆t tex2D vP(xD,yD)
accumulate convolution in tex2D I(x0

D,y0
D), based on

P-space noise tex3D noise(tex2D rP(x0
D,y0

D))
endfor

endfor

Figure 3: Pseudo code for the iterative computation of
surface particle paths.

2D device coordinates, vP(x0
D,y0

D, t), can be computed by
projecting the surface geometry onto the image plane. In
summary, all quantities that are needed to solve Eq. (3)
can be stored in 2D textures with respect to the texel po-
sitions (x0

D,y0
D).

Figure 3 shows the complete pseudo code for texture-
based Lagrangian particle tracing on surfaces. The algo-
rithm is split in two major parts. In the first part, the
2D textures for rP and vP are initialized by rendering
the mesh representation of the hypersurface. The clos-
est depth layer is extracted by the z test. The P-space
positions are set according to the surface’s object coordi-
nates (i.e., the standard vertex coordinates); interpolation
during scanline conversion provides the positions within
the triangles. Similarly, the vector field texture is filled by
vP, which either comes from slicing through a 3D vector
field texture or from vector data attached to the vertices of
the surface. If the vector field is not tangential from con-
struction, it is made tangential by removing the normal
component, which is computed according to the normal
vectors of the surface mesh. In the second part, Eq. (3)
is solved by iterating Euler integration steps. This part
works on the 2D sub-domain of D-space; it successively
updates the coordinate texture rP along the particle traces,
while simultaneously accumulating the contribution of
the convolution integral in texture I. A contribution from
backward particle traces can be computed by additionally
executing the complete algorithm with negated step size.

The algorithm in Figure 3 supports only steady vector
fields. In the case of a time-dependent flow, the projection

Figure 4: Demonstrating the treatment of silhouette lines
and object boundaries for surface flow on a teapot.

of the vector data has to be performed within the integra-
tion loop. Note that the details of the noise accumulation
step are covered in the following section.

By restricting the device coordinates to the image
plane during the texture lookup in the 2D vector field,
we essentially imitate the behavior of the image-space
techniques [11, 21], i.e., the velocity values are evaluated
only at the surface and not at arbitrary 3D points. On
the other hand, the positions in P-space are not projected
onto the hypersurface. This is one crucial difference to
the image-space methods. In this way, we avoid the in-
flow boundaries that are generated by silhouette lines on
the image plane and that cause some of the artifacts in
[11, 21]. Moreover, the P-space representation provides
a better numerical representation of positions in the vicin-
ity of silhouette lines by taking into account three coordi-
nates instead of only two. Finally, the full 3D representa-
tion of P-space points allows us to distinguish two objects
that touch each other in image space, but are at differ-
ent depths. Therefore, it is automatically guaranteed that
flow structures do not extend across object boundaries.
Figure 4 shows that the flow structure is correctly gen-
erated at silhouette lines and boundaries. Even disconti-
nuities of the tangential vector field are well represented.
Figure 5 illustrates a uniform vertical 3D flow projected



Figure 5: Vertical flow projected onto two tori: LIC visu-
alization (left) vs. representation of the magnitude of the
vectors (right).

onto two tori. The LIC approach (left image) normal-
izes the projected vector field to unit length and therefore
produces a discontinuity of the flow on the top and bot-
tom rings of the torus. Even these problematic parts can
be treated by our approach. The right image in Figure 5
shows the same vector field without normalization to unit
length. The streaks are shorter at the top of the torus due
to the small magnitude of the tangential vector field. We
recommend to view the accompanying electronic videos
on our web page [22] because the frame-to-frame coher-
ence provided by our approach becomes apparent only in
animations.

4 Visual Mapping and Noise Injection

So far, the focus has been on the computation of parti-
cle paths. But how can these paths serve as the basis for
generating effective images?

For dense flow visualization, we adopt the idea of LIC
on 2D planar surfaces [2] to produce patterns of different
colors or gray-scale values. The basis is a noise input im-
age. By computing the convolution along the character-
istic curves, high correlation is achieved along the lines,
but no or only little correlation perpendicular to the lines.
Generalizing the LIC idea to 3D and taking into account
time-dependent noise input similarly to IBFV [20], we
obtain

I(x0
D,y0

D) =
∞Z

−∞

k(t − t0)N(rP(t − t0;x0
D,y0

D), t)dt, (4)

where rP(t − t0;x0
D,y0

D) describes the particle path start-
ing at point (x0

D,y0
D) at time t0, k is the filter kernel, and

N(rP, t) is the time-dependent 3D noise input. After dis-

cretizing the integral, we obtain

I(x0
D,y0

D) = ∑
i

kiNi(ri
P(x0

D,y0
D)) ∆t , (5)

where the superscripts i indicate the time dependency.
Since procedural noise is (not yet) supported by GPUs,
we model all textures as sampled textures. In a naive
implementation, the spacetime noise Ni with its four di-
mensions would require a large amount of texture mem-
ory. By adopting the time representation from IBFV [20],
the temporal dimension is replaced by a random tempo-
ral phase per texel. Furthermore, the memory for the re-
maining three spatial dimensions can be reduced by pe-
riodically repeating the 3D texture along the main axes
(i.e., texture wrapping). From experience, noise texture
sizes of 643 or 1283 are appropriate for typical applica-
tions. Repeating noise structures may become apparent
only for planar slices—as long as the surface is at least
slightly curved, texture wrapping leads to good results.

However, one problem is introduced by our solid noise
texture: A constant spatial frequency in physical space
leads to different frequencies after perspective projec-
tion to image space. We overcome associated aliasing
issues by appropriately scaling the noise texture in physi-
cal space and thus compensating the effects of perspec-
tive projection. Mao et al. [15] use a uniform scaling
that is based on the distance of the surface from the cam-
era, which is appropriate for generating a non-animated
LIC image of an object with limited depth range. We add
the following two features to allow for temporally coher-
ent, animated visualizations of large objects. First, the
scaling factor is computed for each particle seed point in-
dependently to ensure a constant image-space frequency
for objects with large depth ranges. Second, the noise is
only scaled with discretized scaling factors and snapped
to fixed positions to achieve frame-to-frame coherence
under camera motions.

We assume a model in which noise with all spatial fre-
quencies, Ñ, is constructed by the sum of band-pass fil-
tered noise:

Ñ(r) =
∞

∑
i=0

Nband(2ir) , (6)

where Nband serves as role model for the noise and the
multiplication by 2i results an increase of the spatial fre-
quencies by 2i. When a band-pass filter is applied to Ñ,
low and high frequencies are removed and therefore the
infinite sum is reduced to a finite sum of Nband(2ir) terms.
As an approximation, we assume a rather narrow band
filter and consider only the linear superposition of two



(a) (b) (c) (d)

Figure 6: Different shading approaches for object and flow rendering: (a) gray-scale flow visualization without addi-
tional surface shading, (b) gray-scale flow modulated with illuminated gray object, (c) yellow/blue flow visualization
modulated with illuminated gray object, and (d) gray-scale flow modulated with cool/warm shaded surface.

neighboring frequency bands,

Nfiltered(r) =
iscale+1

∑
i=iscale

αiNband(2ir) . (7)

The two discrete scaling factors are determined by iscale,
which is computed from the distance d between particle
seed point and camera (by using log2 d). The weights αi

provide a linear interpolation based on the fractional part
of log2 d. This model can directly be realized by sam-
pled textures in combination with a fragment program:
A single copy of Nband is stored as 3D texture, the mea-
sure iscale is computed for each seed point, two texture
lookups with scalings 2iscale and 2(iscale+1) are performed,
and finally these values are linearly interpolated.

Since the noise frequency spectrum is variable in P-
space, the step size of Lagrangian integration should be
as well. We change the step size in a similar way as for
the noise. In this case, however, we do not need the snap-
ping to discrete scaling factors, but can directly use the
distance d as measure.

5 Effective Object and Flow Rendering

For the final rendering, both the LIC-like texture that
represents the flow, and the shape and orientation of
the hypersurface should be taken into account. That
is, two types of information need to be visualized at
the same time: object shape and flow structure. Fig-
ure 6 (a) demonstrates that the geometry of the surface
is extremely hard to recognize if the flow texture is pro-
jected onto the image plane without any modifications.

Since we are restricted to displaying the image on a
2D image plane, visual cues are essential to allow the
user to recognize shape and structure. We think that col-
ors play a crucial role because shape recognition heav-
ily depends on the color variations introduced by illu-
mination. Figure 6 (b) shows a straightforward way of

combining colors from the illumination with the struc-
ture from the flow texture: Gray-scale values are com-
puted according to the diffuse illumination of the gray
object surface and then modulated (i.e., multiplied) with
the gray-scale values from the LIC-like texture. This
image gives a good impression of both flow and object
shape. However, both aspects are coded only by lumi-
nance variations and, therefore, other color dimensions
are not used. Based on the tristimulus theory, colors are
given with respect to a three-dimensional space. Accord-
ing to perception-oriented color systems, luminance, hue,
and saturation can be distinguished as three dimensions.
From this point of view, the approach of Figure 6 (b)
completely neglects hue and saturation. Therefore, we
propose an alternative method: The LIC-like texture is
first mapped from gray-scale variations to either hue or
saturation variations. Afterwards, the transformed flow
texture is modulated with the illuminated gray surface.
Figure 6 (c) demonstrates a mapping to hue variations be-
tween blue and yellow. From our experience, we prefer
hue gradients because they result in a better visual con-
trast than saturation gradients.

Building on the idea of using different color dimen-
sions for coding flow and shape structure, we propose
another, alternative technique in which the roles of hue
and luminance are exchanged. Here, the LIC-like tex-
ture is represented by luminance variations and the sur-
face by hue variations. Cool/warm shading [4] is a well-
established hue-based illumination model that leads to an
intuitive recognition of shape. In Figure 6 (d), cool/warm
shading with yellowish and bluish colors is modulated
with the gray-scale LIC-like texture.

We think that the different approaches from Fig-
ure 6 (b)–(d) have specific advantages and disadvantages.
A pure gray-scale representation (b) allows us to code ad-
ditional properties in the hue and saturation channels and
thus is useful for multivariate or multi-field visualization.



Furthermore, gray-scale images are, of course, a good ba-
sis for black-and-white printing. Since luminance varia-
tions are a strong visual cue for shape recognition, the
technique from Figure 6 (c) provides a good impression
of the geometry. On the other hand, the flow texture is
hard to see in dimly illuminated parts of the surface. Fi-
nally, cool/warm surface shading is excellent in showing
the flow structure in all visible surface regions, but gives
a weaker impression of the surface geometry.

6 Implementation

Our implementation is based on C++ and DirectX 9.0,
and was tested on a Windows XP machine with an ATI
Radeon 9800 Pro GPU (256 MB). GPU states and pro-
grams (i.e., vertex and pixel shader programs) are config-
ured within effect files. A change of this configuration
can be included by changing the clear-text effect files,
without recompiling the C++ code. All shader programs
are formulated with high-level shading language (HLSL)
to achieve a code that is easy to read and maintain. Since
the descriptions of Lagrangian integration in Section 3
and noise representation in Section 4 are already based
on textures, most parts of our visualization approach can
be readily mapped to the functionality of a DirectX 9.0
compliant GPU. A comparable implementation should be
feasible with OpenGL and its vertex and fragment pro-
gram support.

An advantage of our approach is that most operations
take place on a texel-by-texel level. This essentially re-
duces the role of the surrounding C++ program to allo-
cating memory for the required textures and executing
the pixel shader programs by drawing a single domain-
filling quadrilateral. The early z test allows us to skip
the pixel shader programs for the pixels that are not cov-
ered by the projection of the surface onto the image plane.
Textures are updated by using the render-to-texture func-
tionality of DirectX. As an example, the HLSL code for
a single Lagrangian particle integration step is given in
Figure 7, which demonstrates that Eqs. (2) and (3) can be
readily transferred into a corresponding pixel shader pro-
gram. Similarly, the other elements of the algorithm can
be mapped to shader programs in a direct way. Additional
technical information and HLSL codes can be found on
our web page [22].

Some of the textures hold data that is replaced by new

Table 1: Performance measurements in fps.

Domain size 6002 9502

Filter length 25 70 25 70

Teapot 26.2 10.1 13.1 5.1
Automobile 12.6 5.7 8.0 3.4

// Parameters:
float4x4 matMVP; // Model-view-projection matrix
float4 stepSize; // Integration step size

struct VS Output { // Tex coords for viewport-filling quad
float2 TexCoord: TEXCOORD0;

};

struct PS Output { // Homogeneous P-space position
float4 RGBA : COLOR0;

};

// High-level pixel shader program
PS Output IntegratePS (VS Output In) {

PS Output Output;

// Lookup current P-space position in texture PosTex
float4 posP = tex2D(PosTex, In.TexCoord);

// One integration step, split into three parts:
// (1) Transform from P-space into D-space
// Applies model-view-projection matrix:
float4 posD = mul(posP, matMVP);
posD = posD / posD.w; // Homogeneous division
posD.x = .5 * posD.x + .5; // Maps x from [-1,1] to [0,1]
posD.y = -.5 * posD.y + .5; // Maps y from [1,-1] to [0,1]
// (2) Get P-space velocity from the 2D texture
float3 velocity = tex2D(FlowField2dTex, (float2) posD);
// (3) Compute new P-space position with Euler integration
float3 posNew = posP + velocity * stepSize;

// Output new position in homogeneous P-space coordinates
Output.RGBA = float4 (posNew, 1.0);

return Output;
}

Figure 7: High-level pixel shader code for one integration
step in hybrid P/D-space particle tracing.

values during each iteration step. For example, the P-
space coordinates are updated, based on the current posi-
tion. For such a texture, ping-pong rendering is applied:
Two copies of the texture are used, one as the destina-
tion texture (i.e., the render target) and the other one as
the data source. The roles of the two textures are ex-
changed after each iteration step. To limit the required
texture memory and make full use of the internal memory
bandwidth of the GPU, the depth of the color channels
in the textures should be reduced to the smallest possible
level. From our experience, we find the following choices
appropriate: 32 bit floating-point resolution for P-space
positions, 16 bit fixed-point numbers for the accumulated
noise values, 16 bit fixed-point or floating-point numbers
for the flow data, and 8 bit fixed-point numbers for the
input noise and random phases.

Performance measurements for the aforementioned
hardware configuration are shown in Table 1. Filter
length describes the number of integration steps to com-
pute the Line Integral Convolution. The teapot scene
from Figure 4 is an example for a surface with a low poly-
gon count, while the automobile scene from Figures 1
and 6 with its 1 143 796 triangles and 597 069 vertices



represents a realistic industry data set. Please note that
the performance numbers for the two scenes should not
directly be compared with each other because the two
scenes cover different ratios of the domain; the car al-
most completely fills the viewport, while the teapot cov-
ers a smaller percentage. However, the numbers for each
scene show that the complexity of the surface geometry
plays only a small role and that the performance depends
on the domain size and filter length in a nearly linear fash-
ion. Therefore, our implementation allows the user to
balance speed against visualization quality by gradually
changing the filter length and/or the viewport size.

7 Conclusion and Future Work

We have presented a novel approach for texture-based vi-
sualization of vector fields on curved surfaces. The tex-
ture advection mechanism relies on a simultaneous La-
grangian particle tracing in physical and device spaces.
Its built-in key features are: a high degree of output
sensitivity, independence from surface parameterization
and mesh connectivity, frame-to-frame coherence in an-
imations, and a simple and efficient implementation on
GPUs. Noise input for texture advection is modeled as
a solid 3D texture, and a constant noise frequency on
the image plane is achieved by appropriately scaling the
noise in physical space. Finally, we have presented a
number of alternatives to effectively convey surface shape
and flow structure in the same image.

In future work, it will be interesting and beneficial to
introduce dye advection in our concept of texture advec-
tion. However, this will be a challenging task because
dye needs a long history of its path to be stored, which
might require to extend the 2D representation beyond the
closest surface.
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