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Figure 1: Illustrated hierarchical taxonomy of dynamic graph visualization techniques; the number of published techniques per
taxonomic category is encoded in the brightness of the background (for details see Table 4).

Abstract

Dynamic graph visualization focuses on the challenge of representing the evolution of relationships between en-
tities in readable, scalable, and effective diagrams. This work surveys the growing number of approaches in this
discipline. We derive a hierarchical taxonomy of techniques by systematically categorizing and tagging publica-
tions. While static graph visualizations are often divided into node-link and matrix representations, we identify
the representation of time as the major distinguishing feature for dynamic graph visualizations: either graphs are
represented as animated diagrams or as static charts based on a timeline. Evaluations of animated approaches
focus on dynamic stability for preserving the viewer’s mental map or, in general, compare animated diagrams to
timeline-based ones. Finally, we identify and discuss challenges for future research.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI)

1. Introduction

The world is constantly evolving, there is nothing static or
stable in it. But sometimes we pretend there is—just for sim-
plification. In particular when analyzing data, this constraint
is often applied: either we choose a single point in time or
we aggregate longer spans of time. And indeed, the simplifi-
cation is very helpful as it reduces the amount of data, makes
computations faster, and simplifies reasoning as well as com-
munication. However, this approach has its clear limitations:
we learn nothing about the dynamics. As a consequence, we
neither understand how and why certain stages are reached
nor can foresee future changes.

Many aspects of the analog and digital world can be con-
sidered as objects being related to each other, for instance,
people forming a social network, proteins interacting with
each other, or components of a software system communi-
cating through calls. We usually model relational data as
graphs and a very active research community has formed
around visualizing these structures: many visualization tech-
niques have been introduced [vLKS∗11], criteria for read-
able graph visualization have been studied [BRSG07]. And
in fact, in most cases, the above simplification has been
applied, visualizing static graphs only. However, over the
years, researchers started to question this constraint and be-
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Figure 2: Yearly number of publications on dynamic graph
visualization according to our literature database; light gray
bars indicate the total number of publications, colored bars
distinguish the publications by type.

gan thinking about the visualization of dynamic graphs—
relations between objects that change over time, as it is nat-
ural in the real world.

Starting in the 1990s with the problem of editing a static
graph and visualizing the changes, the field was first under-
stood as a subproblem of graph drawing: node-link diagrams
need to be animated without destroying the user’s mental
image of the diagram, the so-called mental map. After the
millennium, with the availability of more and more time-
varying datasets, dynamic graph diagrams were discovered
as an information visualization technique. Approaches be-
came specialized to various application scenarios such as
social network analysis or software engineering. Alterna-
tives to animated node-link diagrams were introduced that
plot the graph onto timelines. By 2010, the visualization of
dynamic graphs was established as a standard visualization
discipline. In consequence, the number of publications more
than doubled from not more than 5 publications per year be-
fore 2006 to 20 publications in 2012 (Figure 2): evaluations
were conducted comparing different techniques and explor-
ing the role of the mental map, application areas were stud-
ied in greater detail, and still many new techniques and novel
combinations of existing techniques were suggested. Visual-
izing dynamic graphs, hence, has become itself a very active
and diverse research discipline involving several communi-
ties. What is missing so far, however, is a comprehensive
survey of the area, structuring and discussing the variety of
approaches and insights.

This paper is intended to fill this gap as it reports the state
of the art in visualizing dynamic graphs. We give a brief in-
troduction to the field (Section 2) and provide central defi-
nitions (Section 3). Based on a systematic literature search
and categorization (Section 4), we build a hierarchical tax-
onomy of dynamic graph visualization and classify existing
techniques into the taxonomy (Section 5); an illustrating rep-
resentation of the taxonomy is provided in Figure 1. We also
discuss evaluation results (Section 6) and applications for
dynamic graph visualization approaches (Section 7). This
systematic review finally allows us to identify challenges for
future research (Section 8).
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Figure 3: Different visual representations of static graphs as
node-link or matrix diagrams all showing the same dataset.

2. Background

Graphs in general form one of the most important data mod-
els in computer science because many problems and do-
mains can be modeled as graph structures. Just to name a
few, there are automata in theoretical computer science, flow
networks such as pipes and roads, digital and non-digital so-
cial networks, computer networks such as the Internet, net-
works of companies and financial transactions, chemical re-
action chains and molecular interactions, epidemic spreads
of diseases in communities, or correlations of controlled
variables in experiments. In most of those applications, tem-
poral development can be observed and needs to be consid-
ered to fully understand the respective problem. Visualiza-
tion is a particular means for exploratively comprehending
and analyzing this data.

A graph consists of objects or entities, usually referred
to as vertices, and relationships between them, called edges.
Representing graphs as node-link diagrams, where vertices
are drawn as visual nodes that are connected by graphical
links representing the edges, has a long tradition. While
the drawing first served illustration purposes only, gradu-
ally, layout algorithms were developed that allow one to au-
tomatically generate readable graph diagrams, for instance,
force-directed layouts, which simulate physical forces be-
tween nodes, orthogonal layouts, where edges are plotted
only along horizontal and vertical axes, or hierarchical lay-
outs, which divide the graph into layers (Figure 3). As an
independent field, graph drawing arose in the 1990s with
the Symposium on Graph Drawing, which will be held in its
22nd edition in 2014. With an increasing interest in infor-
mation visualization, also alternative visual representations
of graphs have been introduced such as adjacency matrices
(Figure 3). In such a matrix visualization, vertices are de-
picted as rows and columns of the matrix; colored cells of
the matrix indicate whether two vertices are connected by
an edge.

The characteristic difference of a dynamic graph to a static
graph is that the structure of the vertices and edges as well as
their attributes can change over time. Figure 4 shows an il-
lustrating example of a dynamic graph and its visualization:
a directed graph consisting of five nodes is visualized over
three time steps as juxtaposed node-link diagrams. The posi-
tion of the nodes is the same for all diagrams, which makes
it easier to track the nodes over time. For instance, we see an
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Figure 4: Illustrating example of juxtaposed node-link dia-
grams on a timeline with constant node positions visualizing
a directed graph with five vertices over three time steps.

edge from node a to node e in the first time step (t1), which
disappears in the second (t2) but reappears in the third (t3).
This small example should just give a first impression of a
straightforward visualization of a dynamic graph—there ex-
ist much more sophisticated approaches as discussed in this
survey.

Other publications have already partly reviewed the field
of visualizing dynamic graphs. In 2001, Branke [Bra01]
summarized the first animated node-link approaches “in a
very early stage” of “dynamic and interactive graph draw-
ing”. In 2007, still focusing on animated node-link diagrams,
Shannon and Quigley [SQ07] survey the field and conclude
that “the issues unique to dynamic graphs are beginning
to be uncovered in more depth”. Since then, various user
studies have been conducted on how important it is to pre-
serve the mental map the user has in mind while watching
animated node-link diagrams, summarized by Archambault
and Purchase [AP13]. Further, Windhanger et al. [WZF11]
discuss dynamic graph visualization from the application-
specific perspective of organizational change in business net-
works. A brief review of dynamic graph visualization is
also part of surveys of larger fields such as visualizing large
graphs [vLKS∗11] and force-directed layouts of node-link
diagrams [Kob12]. Recently, Abello et al. [AAK∗14] gave
an overview of temporal multivariate graphs concentrating
on node-link diagrams and surveying applications in soft-
ware engineering in closer detail.

3. Dynamic Graph Data

Before starting to survey existing approaches, we need to
clarify what data should be analyzed, what characteristics
this data typically has, and what tasks are of interest for this
data.

3.1. Data Model

To define a dynamic graph, we first introduce a (static) graph
G := (V,E), which models a set of objects V , called vertices,
and their relationships E ⊆V ×V , called edges. Then, a dy-
namic graph is defined as a sequence

Γ := (G1,G2, . . . ,Gn)

Table 1: Examples of types of graphs that can be used for
extending the basic definition of dynamic graphs.

graph Gi :=

(un)directed (Vi,Ei) where Ei ⊆Vi×Vi is either interpreted as
directed or undirected

weighted (Vi,E i) : E i ⊆ Vi×R+×Vi

compound (Vi,Ei,ET
i ) : ET

i hierarchy edges forming a tree
multivariate (Vi,Ei,ρ) : Ei = (E i,1, . . . ,E i,k) list of sets of

weighted edges and function ρ retrieves a multi-
dimensional attribute vector for each v ∈ Vi

where Gi := (Vi,Ei) are static graphs and indices refer to a
sequence of time steps τ := (t1, t2, . . . , tn).

This basic definition can be interpreted and extended in
different ways (Table 1 gives an overview): For instance, in a
directed graph, e1 = (v,w) and e2 = (w,v) represent different
relationships, whereas they are interpreted as the same rela-
tionship in an undirected graph. A weighted graph assigns
a numeric attribute, called weight, to each edge. In graph
theory, a network is a directed weighted graph, but over-
all, the term network is not used consistently in literature;
for instance, a social network not always refers to a directed
weighted graph. Further, a compound graph adds a hierarchi-
cal structure to the vertices, often used for interactively sim-
plifying the graph by collapsing hierarchy vertices. The hier-
archy can be considered as static over time as well as it might
change together with the graph structure. In a multivariate
dynamic graph, we have several attributes of edges or ver-
tices that change over time. Moreover, application-specific
extensions are possible but cannot be listed all. Of course,
different extensions might be combined, for example, creat-
ing a dynamic weighted directed compound graph.

Please note that, similar to most of the approaches ref-
erenced in this survey, the above data model considers
time as being discrete, but ordinal and continuous time
scales [AMST11] can be represented indirectly: ordinal val-
ues could be mapped to virtual points on a discrete time
scale; continuous processes that might form the basis of a
dynamic graph need to be sampled to be represented in our
data model. We also do not discern between instants and
intervals [AMST11]: whether Gi is a snapshot at instant ti
or aggregates an interval around ti. Often, it is not specified
by the visualization technique which of the two models ap-
ply and rather depends on application domain and context.
Abello et al. [AAK∗14] discuss the modeling and represen-
tation of time for dynamic graphs in greater detail.

3.2. Graph Characteristics

The goal of analyzing graph data is to retrieve characteristic
properties of its structure and attributes. These can be, for
instance, topological properties that apply to the graph as a
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whole, such as that the graph is planar (i.e., can be drawn
as a 2D node-link diagram without any edge crossings), is
sparse or dense (i.e., has few or many edges in relation to
the possible number of edges), is acyclic (i.e., there is no
cyclic path in a directed graph), is bipartite (i.e., the vertices
fall into two sets, edges connecting only vertices from two
different sets), etc. Also, individual properties of vertices
and edges can be investigated such as retrieving all neigh-
bors of a vertex, finding the shortest path between two ver-
tices, or identifying clusters of vertices connected by many
edges. These characteristics, however, only describe proper-
ties of static graphs. They are applicable to each graph in-
dividually in the sequence graphs, but there exist additional
dynamic properties [BBD13]. A particularly important one
is dynamic variance, which quantifies how much the graph
structure changes from one time step to the next. Other prop-
erties are, for instance, whether the graph is only growing
or shrinking, whether there are any trends in the evolution
of vertex degrees or edge weights, or whether clusters or
paths are preserved over time. Which of the properties are
of interest, however, highly depends on the application the
graph structure is used for. Typical graph analysis tasks are
described elsewhere, for static graphs [LPP∗06] and for spe-
cialized dynamic graphs [APS13, BPF14a].

4. Scope and Methodology

In order to retrieve a complete and structured list of ref-
erences that forms the basis of this survey, we followed a
systematic approach: we precisely defined the scope of the
survey and retrieved relevant publications within that scope
by manually searching through the relevant journals and
conference proceedings as well as by following references
of already retrieved publications. Through tagging, we then
structured the retrieved literature.

4.1. Scope

The specific scope of this survey is visualizing dynamic
graph structures as defined in Section 3.1. Some other visu-
alization problems are specializations of the dynamic graph
visualization problem or can be modeled as such, for in-
stance, the visualization of static graphs, the comparison of
two graphs, the visualization or comparison of hierarchies,
or the visualization of time series. Although dynamic graph
visualization techniques can be used to display such data,
there are more specialized (usually, much more suitable) vi-
sualization techniques for these problems. Hence, we con-
sider these specializations of the problem as out of scope
for this survey. We also do not take into account approaches
that first aggregate the dynamic graph (e.g., by using statis-
tics or clustering) and then only visualize the simplified re-
sult, because the dynamic graph cannot be retrieved anymore
from the displayed information. Moreover, there are theories
and methods related to either dynamic graphs or visualiza-
tion, which we cannot include into this survey: graph the-

ory, graph algorithms, visualization theory, interaction the-
ory, perception, etc. We focus only on those aspects of those
related fields that were directly applied to dynamic graph vi-
sualization.

4.2. Data Collection

Collecting the relevant publications for this survey, we
started with a selection of papers that we knew from own
previous research. We further manually scanned through all
issues and proceedings of the main information visualization
and graph drawing journals and conferences:

• Journals

– Computer Graphics Forum
– IEEE Transactions on Visualization and Computer Graphics
– Information Visualization
– Journal of Graph Algorithms and Applications

• Conferences

– IEEE Pacific Visualization Symposium (PacificVis) [2001–
2004: InVis.au; 2005–2007: APVIS]

– IEEE Symposium on Information Visualization (InfoVis)
[since 2006 a special issue of IEEE Transactions on Visu-
alization and Computer Graphics]

– International Conference on Information Visualisation (IV)
– Joint Eurographics–IEEE VGTC Symposium on Visualization

(EuroVis) [1999–2004: VisSym; since 2008 a special issue of
Computer Graphics Forum]

– Symposium on Graph Drawing (GD)

We followed citations in both directions: we checked the
list of references in the paper to find older works and inves-
tigated citations of the paper using Google Scholar. Among
those papers in scope of this survey, we only inserted by
default peer-reviewed full papers published in journals and
conferences written in English. If other criteria indicated cer-
tain impact and quality (e.g., high number of citations, re-
markable contribution), we occasionally added papers not
fulfilling all conditions.

4.3. Data Analysis

We applied tagging as the main instrument to structure the
literature for this survey. Using tags instead of categorical
dimensions provides the advantage that the publications can
be assigned to multiple tags rather than just to one cate-
gory per dimension. Categorical dimensions, however, better
group the characteristics of an approach while tags usually
are unstructured. Hence, we additionally defined tag cate-
gories (i.e., groups of tags belonging to the same dimension)
for parts of the tags to also integrate this advantage into our
tagging approach. In particular, we assigned a list of tags
to each collected publication. We discussed the tags among
the authors and defined the meaning of each tag in a short
description. We further grouped important tags describing
characteristics of similar kind into named categories. To sys-
tematically derive the list of tags and assign these to the pub-
lication, we used a process with three stages:
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1. Explorative Tagging: We selected a small, arbitrary part
of the collected publications and freely assigned reason-
able tags. After analyzing some publications, we started
to consolidate the tags by merging similar ones. More-
over, we built categories from tags describing the same
dimension of characteristics. We continued with this tag-
ging phase until we reached a stable list of central tags
and categories.

2. Category Tagging: We then systematically classified all
publications with respect to the tag categories. Each pub-
lication was assigned to at least one tag per category. Also
some uncategorized or new tags were occasionally as-
signed during this process.

3. Supplementary Tagging: The final stage of the tagging
was to analyze and compare groups of similar publi-
cations in detail. To systematically derive those groups
sharing similar important characteristics, we restricted
the bibliography by category tags assigned in the previ-
ous stage and combinations thereof. Group-specific sup-
plementary tags were also identified.

4.4. Literature Dataset

The dataset we retrieved following the described method-
ology consists of 129 publications from 1992 to 2014. Five
categories of tags have been identified in the tagging process:
the general type of the publication, the visual representation
of time, the visualization paradigm used for depicting the
graph structure, the kind of evaluation performed, and the
application addressed. We assigned at least one tag per cate-
gory and usually a number of other tags to each publication.
Figure 5 summarizes the result of the tagging process as a
tag cloud, where the frequency of each tag is indicated by a
subscript number and encoded in the font size. Additional to
this quantified list of tags, Table 2 provides the descriptions
of categories and included tags. In particular, the category
tags formed the basis to derive a taxonomy of graph visual-
ization techniques and to structure this survey. The complete
dataset including all details and tags for each of the publica-
tion is available through an interactive Web tool†.

The type of the publication forms one of the main features
to discriminate the collected publications. Technique papers
describing novel visualization approaches form the set of
most important publications for this survey. All publica-
tions classified as such are described individually in this sur-
vey and classified into the taxonomy of visualization tech-
niques (Section 5). We also systematically discuss all publi-
cations describing an evaluation of dynamic graph visualiza-
tion techniques (Section 6). We further give an overview of
applications of dynamic graph visualizations, however, not
claiming completeness in this area (Section 7).

† http://go.visus.uni-stuttgart.de/dynamicgraphs

Table 2: Categories and contained tags with descriptions.

tag (category) description

type type of the paper
application applying dynamic graph visualization to a specific appli-

cation scenario
evaluation empirical, algorithmic, or theoretical evaluation of visual-

ization approaches
technique novel visualization technique or system

time visual representation of time
animation mapping time to time in an animation
timeline mapping time to space onto a timeline
generic being applicable to all representations of time

paradigm graph visualization paradigm
node-link representing the graph as nodes connected by links
matrix representing the graph as a visual adjacency matrix
generic being applicable to all graph representations

evaluation kind of evaluation
algorithmic testing the presented approach algorithmically or using

metrics
case_study discussing a small number of application examples
expert assessing the approach through external domain or visu-

alization experts
none no specific evaluation provided
survey specially broad survey of related work
theoretical theoretical considerations such as proof or runtime com-

plexity
user_study conducting a study involving other users

application area of application
biology bioinformatics data such as protein interactions or

metabolic pathways
business business- or economy-related data such as financial

transactions, stock market, business processes
document document collections, bibliometrics, and information re-

trieved from texts
eye_tracking data recorded during eye-tracking experiments
infrastructure infrastructure networks such as computer, communica-

tion, power, or road networks
media data related to movies, TV, music, news and the like
social social networks, social media, and other data from social

life
software_engineering information related software such as components, source

code, developers, documentation, etc.
sports sports-related data such as performance data or results
generic no specific application suggested

5. Taxonomy and Classification of Dynamic Graph
Visualization Techniques

Many different visualization techniques have been intro-
duced for dynamic graph structures. In particular, we col-
lected and classified 60 publications as technique papers. To
provide a systematic overview of these techniques, we cate-
gorize the approaches according to a taxonomy. The taxon-
omy we developed for this purpose is structured hierarchi-
cally and consists of three layers, the first referenced with
Roman numbers, the second with small letters in alphabetic
order, and the third with Arabic numbers. While a first il-
lustration of the taxonomy has been already presented in
Figure 1, Table 4 provides a detailed description of its cat-
egories, their hierarchical structure, and the classification of
techniques. This section describes all techniques and thereby
follows as well the hierarchical structure of the taxonomy
and employs the taxonomic categories as headlines. Addi-
tional to conceptional sketches of some of the presented ap-
proaches, small icons are used to illustrate and symbolize the
categories of the taxonomy.
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Figure 5: Tag cloud of manually assigned tags grouped by category summarizing all publications of our database; subscript
numbers and font sizes refer to the usage frequency of the tags.

Table 3: Mapping between tags and taxonomy categories (� required; � optional).

I. I.a. I.a.1. I.a.2. I.a.3. I.b. I.b.1. I.b.2. II. II.a. II.a.1. II.a.2 II.a.3. II.a.4. II.b. II.b.1. II.b.2. III.

time
animation � � � � � � � � · · · · · · · · · �
timeline · · · · · · · · � � � � � � � � � �

paradigm
node-link � � � � � � � � � � � � � � · · · �
matrix · · · · · · · · � · · · · · � � � �

other
compound_graph � � � � � � � · � � � � � � � � � �
general-purpose_layout � � � � � · · · � � � � � � � � � �
integrated_node-link · · · · · · · · � � · · � � · · · �
intra-cell_timelines · · · · · · · · � · · · · · � � · �
juxtaposed_node-link · · · · · · · · � � � · · � · · · �
layered_matrices · · · · · · · · � · · · · · � · � �
offline_problem � � · � � � � � · · · · · · · · · �
online_problem � � � · � � � � · · · · · · · · · �
special-purpose_layout � · · · · � � � · · · · · · · · · �
superimposed_node-link · · · · · · · · � � · � · � · · · �
transition_problem � � · · � � � � · · · · · · · · · �

Please note that the taxonomy is pragmatically structur-
ing existing techniques rather than exploring all possible
concepts. Hence, combinations of concepts are not reflected
if we have not found any example in the literature (e.g., a
combination of animation and the matrix paradigm). This,
however, only reflects the current state of the art and does
not imply that a specific compound would be impossible or
useless—the taxonomy might need to be extended through
additional categories in the future. The specific mapping be-
tween tags and taxonomy categories can be retrieved from
Table 3. The criteria to substructure the taxonomy are cho-
sen from diverse categories of tags considering that a visual-
ization technique cannot only be described through the em-
ployed visual mapping but as well through the requirements
on data and algorithms. All combinations of tags can be ex-
plored through the provided literature database.

Two basic ways of visualizing a graph structure are node-
link diagrams and adjacency matrices. As already illustrated
in Figure 3, node-link diagrams represent vertices as graph-
ical nodes that are connected by links; in a matrix, vertices
are mapped to rows and columns of the matrix and a colored

cell at an intersection of a row and column encodes an edge.
While this would be one of the most important criteria to
discern static graph visualizations, the time dimension adds
another central aspect to the visualization when considering
dynamic graphs. As Beck et al. [BBD09, BBD13] already
discussed in this context, the time dimension can be mapped
in an animation to a simulated time (time-to-time mapping)
or to a space dimension of the generated visualization rep-
resenting a timeline (time-to-space mapping). Other map-
pings would be possible—for instance, a mapping of time
to color—but are rarely applied as an independent visual-
ization approach. What can be found, however, are hybrid
techniques that combine animation with timeline represen-
tations. Hence, the first level of the taxonomy divides the
approaches into animation, timeline, and hybrid techniques.

I. Animation (Time-To-Time Mapping)

A mapping of the timestamps as-
signed to the sequence of graphs to
visualization time results in an ani-

mated representation. Combining this straightforward map-
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Table 4: Hierarchical taxonomy of dynamic graph visualization techniques.

Taxonomic Category Illustration # Techniques

I. Animation (Time-to-Time Mapping) 33

I.a. General-Purpose Layout 21

I.a.1. Online Problem

?
6 layout adjustment to avoid overlap [MELS95]

framework based on Bayesian decision theory [BW97]
simulated annealing with customizable weights for optimization criteria [LLY06]
efficient algorithm and GPU implementation [FT08b]
consider age of nodes to stabilize the layout [GdBG12]
more efficient initial positions of nodes [HMHU13]

I.a.2. Offline Problem 7 Foresighted Layout (with Tolerance) [DGK01,DG02,GBPD05]
GraphAEL: force-directed layout with virtual forces between time steps [EHK∗04b,FKN∗05]
Visone: force-directed layout with additional energy factors between time steps [BS08]
user-selected multiple foci [FWSL12]

I.a.3. Transition Problem 8 stepwise animation for navigation based on a spring algorithm [HEW98]
Marey : stepwise animation moving (parts of) the graph together [FE01,FE02,FH02,NF02]
VisuGraph: using super-graph as intermediate step [LD08]
transitions of bundled edges [HEF∗13]
GraphDiaries: highlight changes in staged transitions [BPF14a]

I.b. Special-Purpose Layout 12

I.b.1. Compound Graphs 8 force-directed approach preserving the position of clusters [FT04]
nested bubbles in 3D [KG06]
XLDN: extending Foresighted Layout with Tolerance to dynamic compound graphs [PB08]
focused animation collapsing constant parts of the hierarchy [RPD09]
ContexTour : smooth contours of colored clusters [LSCL10]
Space-filling maps of colored clusters [MKH12,HKV12]
degree-of-interest functions for abstracting and focusing large graphs [AHSS13]

I.b.2. Other 4 online drawing of planar graphs [CDBT∗92,CDBTT95]
DynaDAG: acyclic graphs based on hierarchical layout [Nor96]
stable layout of small world graphs [BFP06]

II. Timeline (Time-to-Space Mapping) 23

II.a. Node-Link

+
15

II.a.1. Juxtaposed 5 TimeArcTrees: linearized nodes on vertical axes [GBD09]
Parallel Edge Splatting: artificially bipartite, linearized node layout [BVB∗11,BBW12]
nested circles: partial links in TimeSpiderTrees [BFBD10], ego centered graphs [FHQ11]

II.a.2. Superimposed 5 3D stack with fixed positions [BC03,DE02]
3D stack with relaxed positions [EKLN04,GW06]
abstracting nodes and links to tubes [GHW09]

II.a.3. Integrated 3 ego network with edges as timelines [Rei10]
ego network with ego node as timeline [SWW11]
Extended Massive Sequence Views: event-based timeline with parallel edges [vdEHBvW13]

II.a.4. Hybrid (Juxt., Super., Int.) 2 juxtaposition as well as 2D and 3D superimposition [FAM∗11, ITK10]

II.b. Matrix

+
8

II.b.1. Intra-Cell Timelines 4 time series as sparkline bar charts [BSW13,YEL10]
Gestaltlines encoding three metrics in angles and line lengths [BN11]
pixel-based folded timelines [SWS10]

II.b.2. Layered Matrices 4 (Layered) TimeRadarTrees: radially layered lists with radial matrix thumbnails [BD08,BHW11]
radially bended and layered matrices [VBSW13]
Cubix : stacked matrices to a 3D cube and sliced small multiples thereof [BPF14b]

III. Hybrid (Animation, Timeline) 4 in situ integration of small visualizations [HSS11]
cluster evolution on a timeline for navigating animated node-link diagrams [SMM12]
moving timeline based on Parallel Edge Splatting [BBV∗12]
DiffAni : combinations of small multiples, difference representations, and animation [RM13]
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ping with node-link diagrams creates a quite intuitive dy-
namic graph visualization: animated node-link diagrams. Up
to now, still all animated approaches are based on node-link
diagrams—we have not found any based on adjacency ma-
trices. Hence, this taxonomy category refers to node-link ap-
proaches only. In nearly all approaches, the mental map is
discussed. The term refers to the abstract structural infor-
mation a user forms by looking at the layout of a graph. In
the context of dynamic graph drawing, changes to this map
should be minimal, in other words algorithms to draw se-
quences of graphs should preserve the mental map. To this
end, the position of nodes is tried to be kept stable, which
is called dynamic stability. This section is subdivided into
general-purpose layouts and special-purpose layouts be-
cause having a specialized graph type, such as a compound
graphs, changes the layout problem of node-link diagrams
reasonably. Actually, specialized layouts such as for planar
or acyclic graphs had been discussed before techniques for
the drawing of general dynamic graphs were introduced.

I.a. General-Purpose Layout

General-purpose layouts do not im-
pose any requirements on the type
of graph (cf. Table 1). They can be

discerned, however, by whether they compute the individ-
ual node-link layouts of the animation only by considering
past time steps (online) or both, past and future time steps
(offline). In general, online approaches are more flexible as
they are also applicable to scenarios where the complete evo-
lution of the graph is not yet known when starting the ani-
mation (e.g., for interactively changed graphs or real-time
monitoring). On the other hand, offline approaches allow
for better optimizing the layout and maintaining the mental
map because next changes are known. Other approaches are
quite independent from the online–offline problem, but look
in closer detail at the animated transition period between two
consecutive layouts.

?
I.a.1. Online Problem The online
layout problem first came up when
interacting with static graphs: in par-

ticular, when showing only a subset of nodes and links or
editing a graph, interactions lead to changes in the graph
structure that should be displayed—hence, a sequence of
graphs is visualized without knowing the full sequence from
the beginning. Misue et al. [MELS95] introduce the first lay-
out adaption approach for general graphs, which addresses
the problem of graph editing and node overlap: in order
to preserve the mental map, their force-directed approach
maintains the original horizontal and vertical ordering of
nodes while reducing overlap; the initial layout, however, is
not computed by the approach. Brandes and Wagner [BW97]
discuss an abstract framework based on Bayesian decision
theory that describes the problem as a twofold model: a
readability model of the individual graphs and a stability

model considering distances between the individual layouts
and their predecessors. Basically, by multiplying quality fac-
tors from both models and optimizing the resulting func-
tions, they derive a dynamic graph layout, which is imple-
mented for a force-directed and an orthogonal approach.
Lee et al. [LLY06] describe online layout as an optimiza-
tion problem with customizable weights for different layout
criteria; they apply simulated annealing for deriving a lay-
out solution. Gorochowski et al. [GdBG12] suggest to use
the concept of node age to preserve specifically the layout of
old and stable graph structures. By introducing an efficient
force-directed online layout algorithm and implementing it
on the GPU, Frishman and Tal [FT08b] present a particularly
fast layout approach. Also addressing efficiency, Hayashi et
al. [HMHU13] investigate the effects of initial node place-
ment on the responsiveness of a layout algorithm.

I.a.2. Offline Problem When a
graph structure does not change
through interactive editing or navi-

gation, but through changes in the underlying domain, the
full evolution is usually known at visualization time (an
exception are monitoring systems). In this case, not only
past but also future layouts can be considered for laying
out the graphs of the time steps. This simplifies the lay-
out problem and makes easier solutions applicable, the most
straightforward one being to aggregate the full sequence
of graphs and to lay out only this so-called super-graph
(Figure 6)—individual layouts of the time steps are derived
as a subset of the super-graph layout. However, adapting
the layout gradually might be a better trade-off between
preserving the mental map and individually readable lay-
outs. Diehl et al. [DGK01] introduce Foresighted Layout, a
generic framework that optimizes the straightforward super-
graph approach: nodes are grouped if they are not active to-
gether and a super-graph is constructed from these grouped
nodes applying an arbitrary static graph layout—due to
grouping, node positions are reused if possible. Diehl and
Görg [DG02] further extend this approach to Foresighted
Layout with Tolerance adjusting the individual layouts de-
rived from the super-graph within a certain level of deviation
from the super-graph. The optimization of individual lay-
outs can be realized with a force-directed algorithm [DG02],
but as well with adapted algorithms for orthogonal and
hierarchical layouts [GBPD05]. In GraphAEL [EHK∗04b,
FKN∗05], the sequence of graphs is also aggregated but not
into a super-graph: equivalent nodes are not merged but just
connected through virtual edges. Considering theses edges
and ignoring repulsive forces of nodes from different time
steps, a single run of a force-directed algorithm determines
the layout of all individual graphs. This technique can be ap-
plied to 2D and 3D animations [EHK∗04b] or to hyperbolic
and spherical spaces [FKN∗05]. A similar approach was im-
plemented for Visone [BS08] by introducing additional en-
ergy factors that increase with the position distance of equiv-
alent nodes in adjacent time steps and need to be minimized.
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Figure 6: Constructing a super-graph from a dynamic graph
with three time-steps; edges occurring in multiple time steps
are aggregated by higher edge weights (line thickness).

Feng et al. [FWSL12] combine user-selected multiple foci
with an offline approach: the focused nodes and their neigh-
borhoods are enlarged.

I.a.3. Transition Problem Animat-
ing a node-link diagram does not
only require to determine a sequence

of layouts, but also the transitions between consecutive lay-
outs need to be modeled—for the straightforward solution of
just morphing one layout into the other, too many changes
may happen at the same time to be traceable by the viewer.
Huang et al. [HEW98] adapt a force-directed method for
stepwise transitions when navigating a dynamic graph: when
focusing a node, it is moved first to the center (with other
nodes moving relative to it), then superfluous nodes disap-
pear and new nodes appear, before finally the new layout
is optimized. In Marey [FE01, FE02], the transition period
consists of four phases: first, node and edges are removed
if necessary; then, the graph is translated towards the new
layout as if it is a single object; afterwards, the individ-
ual nodes are moved independently to their new positions;
and finally, the new nodes and edges are shown. This ap-
proach is further extended by detecting clusters of nodes that
share similar motions and moving theses together [FH02];
Nesbitt and Friedrich [NF02] suggest to use Gestalt laws
to detect and structure the motion. In VisuGraph [LD08],
a super-graph layout is computed with nodes in the same
time step attracted to a specific position; for the transi-
tion between two time steps, the graph is first morphed to
the super-graph to recalibrate the mental map, before the
super-graph is further transformed into the layout of the
next time-step. For graph layouts with fixed node positions,
Hurter et al. [HEF∗13] suggest an approach for transform-
ing edge bundling smoothly between time steps. Bach et
al. [BPF14a] use staged transitions similar to Marey, but
specifically highlight removed and added elements; more-
over, they use thumbnail images as previews for adjacent
time steps.

I.b. Special-Purpose Layout

Specific characteristics of the graph
may require, or at least profit from,
other layout approaches than the

ones presented for general dynamic graphs. All different

graph characteristics discussed in Section 3.2 could be con-
sidered in this context. Among these, dynamic compound
graphs were addressed by many works while other charac-
teristics have been investigated only occasionally yet. The
current taxonomy category also includes online and offline
approaches as well as techniques for transition between time
steps; the special characteristics of the graph structure, how-
ever, discriminate the approaches more clearly.

I.b.1. Compound Graph The ad-
ditional hierarchy of a compound
graph, which structures the set of

nodes, can also be used to structure the visualization. In par-
ticular for larger graphs, it might help to abstract from sin-
gle nodes to groups of nodes and can make the visualiza-
tion more scalable. If approaches use clustering algorithms
for creating a hierarchy or clusters, not only layout stability
but also cluster stability needs to be optimized and clusters
need to be tracked across time. Frishman and Tal [FT04] in-
troduce an online approach for clustered graphs (i.e., com-
pound graphs with only one level of clusters) based on a
force-directed algorithm: boxes are drawn around the nodes
of a cluster and the positions of clusters are tried to be pre-
served. Kumar and Garland [KG06] draw nested bubbles
around nodes for a 3D graph layout to indicate the com-
pound structure based on a force-directed offline approach.
Pohl and Birke [PB08] extend Foresighted Layout with Tol-
erance [DG02] to compound graphs representing the hierar-
chy with nested boxes. Reitz et al. [RPD09] use the hierarchy
to focus the animation and collapsing those hierarchies that
stay unchanged with respect to the current time step. Con-
texTour [LSCL10] uses smooth contours with different col-
ors to distinguish clusters, which creates a map-like image.
Taking the map metaphor further, Mashima et al. [MKH12]
and Hu et al. [HKV12] generate more space-filling drawings
with directly bordering ‘countries’. Abello et al. [AHSS13]
discuss applying degree-of-interest functions to large graphs
to highly aggregate parts of the graph while analyzing other
parts in detail.

I.b.2. Other Dynamic graphs might
have diverse characteristics that can
be specifically considered for the

layout. Actually, the publication that we regard as the first
dynamic graph visualization according to the definitions and
scope provided in Section 3.1 and Section 4.1 is special-
ized for variants of planar graphs: Cohen et al. published
it as a technical report in 1992 [CDBT∗92] and extended
it as journal article in 1995 [CDBTT95]. They present a
framework for drawing the graphs that warrants the pla-
narity of the visual embedding. For acyclic graphs, Dy-
naDAG [Nor96] extends the Sugiyama layout [STT81] for
hierarchical drawings trying to preserve the mental map.
Brandes et al. [BFP06] focus on drawing small-world graphs
(i.e., graphs with short minimal distances between arbitrary
nodes) and introduce a stable layout algorithm.
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Figure 7: Juxtaposed node-link approaches on a timeline.

II. Timeline (Time-to-Space Mapping)

Instead of using animation, the graph
can be drawn onto a timeline in a time-
to-space mapping. Timeline-based ap-

proaches promise to provide a better overview of time as
they show the complete sequence of graphs in a static im-
age [TMB02]. At least for small datasets, arbitrary points in
time might be compared without interaction and characteris-
tics of the graph could become traceable along the full evo-
lution of the graph. However, only little space is available
for drawing each of the graphs, which might decrease the
readability of the diagram. This visual scalability problem
is one of the main challenges for the techniques classified
into this category. A main distinguishing feature of the ap-
proaches is whether they are based on node-link diagrams or
on adjacency matrix representations.

II.a. Node-Link-Based Approaches

+
Placing node-link diagrams on a time-
line is simple: as the introductory ex-
ample in Figure 4 shows, node-link di-

agrams just need to be positioned next to each other, prefer-
ably applying a fixed layout of the nodes. In addition to this
form of juxtaposition, other approaches can be used to lay
out the diagrams: for instance, diagrams can be stacked on
top of each other, which we call superimposition; or the se-
quence of graphs can be merged into an integrated diagram.
These three categories—juxtaposed, superimposed, and in-
tegrated—are equivalent to the three categories Gleicher
et al. [GAW∗11] describe as generic approaches to visual
comparison (while the first two categories carry the same
name in this classification, integration is a form of explicit
encoding). Similar categories are described by Javed and
Elmqvist [JE12] with the main difference that integrated ap-
proaches are divided into overloading and nesting.

II.a.1. Juxtaposed Juxtaposing node-
link diagrams in a small multiples ap-
proach might be considered as simple,

even trivial. However, considering this as a multiple views
approach and just placing standard diagrams next to each
other may not always produce convincing results: it is hard
to see the differences between subsequent time steps, it is
difficult to trace a node over several time steps, each dia-
gram is quite small, and the overall representation is likely

fixed positions relaxed positions

Figure 8: Superimposed node-link approaches with different
layers representing the time steps.

cluttered even for small examples. Several approaches at-
tempt to address these problems and suggest aligned and
explicitly connected diagrams: TimeArcTrees [GBD09] ar-
range the nodes onto vertical axes and optimize the node or-
dering (Figure 7, linearized); this makes it easier to compare
time steps and trace nodes, but visual scalability stays low.
Parallel Edge Splatting [BVB∗11] extends this approach by
making each of the vertically arranged graphs artificially
bipartite—edges are all directed from left to right (Figure 7,
linearized bipartite). Additionally, plotting edge density in-
stead of drawing overlapping links, this extension increases
scalability. Also, a radial variant of Parallel Edge Splat-
ting is possible [BBW12]. Other radially juxtaposed vari-
ants of node-link diagrams were introduced as well: Time-
SpiderTrees [BFBD10] radially layer the node-link diagrams
as nested circles (Figure 7, radially layered); but instead of
completely drawing the links in those diagrams, only par-
tial links are depicted (and expanded on demand). Farrugia
et al. [FHQ11] use a similar layout to depict ego centered
dynamic graphs (i.e., only neighboring nodes of a selected
node are shown). Since ego networks are quite sparse and
small, completely drawn links do not produce much clutter.
To compare several ego networks, their radial representation
can be juxtaposed as small multiples.

II.a.2. Superimposed Instead of pla-
cing diagrams next to each other, they
can be stacked on top of each other. In

2D, the nodes should have the same positions and the edges
belonging to different time steps need to be discerned by
color or stroke [EKLN04]. Stacked 2D diagrams can be-
come 3D diagrams quite naturally through adding the time
dimension as z-axis. However, as the third dimension is only
used in discrete layers, these approaches are often referred to
as 2.5D techniques. For instance, Dwyer and Eades [DE02]
place 3D cylinders representing the nodes on an invisible
2D plane; edges at different levels indicate flows in the
graph. Similarly, Brandes and Corman [BC03] depict nodes
as cylinders, but also add transparent planes that help dis-
cern the stacked layers (Figure 8, fixed positions). Erten et
al. [EKLN04], in contrast, allow the same node to have dif-
ferent positions on the layers; to preserve the mental map,
they use an adapted force-directed layout algorithm that
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timeline edges ego timeline parallel edges

Figure 9: Node-link approaches with an integrated timeline.

moves the same nodes to at least similar positions across
layers (Figure 8, relaxed positions). Groh et al. [GHW09] ex-
tend this approach by abstracting from nodes and links: they
just use the connections between the same nodes of different
layers (i.e., the dashed lines in Figure 8, relaxed positions)
and visualize these as 3D tubes.

II.a.3. Integrated In an integrated di-
agram, the timeline is woven into the
node-link diagram—diagrams for dif-

ferent time steps cannot be separated anymore without de-
stroying the layout. For instance, Reitz [Rei10] shows ego
networks where the evolution of edge weights is plotted
onto each edge by varying its color in sections; each edge,
hence, forms an individual timeline (Figure 9, edge time-
lines). Shi et al. [SWW11] focus on ego networks as well
and introduce an approach they call 1.5D layout: they con-
nect a central timeline representing the ego node with its
neighbors by a link at the point in time where an edge first
appears (Figure 9, ego timeline). For graphs where edges
represent instant events (they can be assigned to a specific
point in time without having a duration), van den Elzen
et al. [vdEHBvW13] suggest Extended Massive Sequence
Views, a technique that arranges a list of events as a hori-
zontal timeline and orders nodes onto the vertical axis; edges
are drawn at the respective position of the timeline as vertical
lines connecting two vertical node positions (Figure 9, paral-
lel edges). The authors discuss various strategies to linearly
arrange the nodes as well as a radial variant of the visual-
ization. In general, integrated approaches seem to be often
restricted to only special types of dynamic graphs. An ad-
vantage is that the integration of the timeline allows the rep-
resentation of arbitrarily fine samplings of continuous time.

II.a.4. Hybrid (Juxtaposed, Super-
imposed, Integrated) The different
approaches to map node-link diagrams

onto a timeline can also be combined. A simple approach is
to have different views for the approaches and to smoothly
transform one into the other, for instance, juxtaposed
node-link diagrams as well as 2D and 3D superimposed
ones [FAM∗11, ITK10]. While Federico et al. [FAM∗11]
suggest three predefined views (camera perspective and
layer positions), Itoh et al. [ITK10] allow the user to inde-
pendently set camera perspective and layer positions.

a b c
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b

c
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Figure 10: Different visualization approaches for intra-cell
timelines in matrix representations.

II.b. Matrix-Based Approaches

+
Since adjacency matrices are used for
visualizing static graphs, they can also
be employed for encoding dynamic

graphs on a timeline. The challenge is to connect the spatial
encoding of time with the matrix information, which seems
to be harder than in node-link diagrams because matrices are
less flexible with respect to layout. However, advantages of
the matrix representations—for instance, staying more read-
able for larger and denser graphs [GFC05, KEC06]—justify
to tackle these difficulties. Depending on how the timeline
and matrix are combined, we identify two types of visual-
ization techniques based on adjacency matrices.

II.b.1. Intra-Cell Timelines As a dimensional
stacking approach, the cells of an adjacency matrix
may each contain an individual timeline to repre-

sent the dynamic changes of the edge encoded in the partic-
ular cell; the small intra-cell representations are a form of
time series encoded in a sparkline [Tuf06]. As illustrated in
Figure 10, very different forms of intra-cell timeline repre-
sentations exist. For instance, it is possible to embed a sim-
ple bar chart showing the time on a horizontal axis from
left to right [BSW13, YEL10] (Figure 10, left). In particu-
lar, Burch et al. [BSW13] show how a hierarchy structuring
the vertices can be attached to sides of the matrix to repre-
sent a dynamic compound graph. Yi et al. [YEL10] extend
the basic approach by displaying aggregated timelines for
the vertices and encoding different edge types with different
colors. When the cells become too small, the timeline rep-
resentations become colored cells (as when showing a static
graph). Instead of bars, Brandes and Nick [BN11] use so-
called Gestaltlines as intra-cell representations: stacked lines
encode three metrics, one in their angle, one in their length to
the left, and one in their length to the right (Figure 10, mid-
dle). Moreover, Stein et al. [SWS10] suggest a pixel-based
approach that folds a timeline into a cell so that each pixel
(or any other quadratic subdivision) of the cell represents
a point in time (Figure 10, right). The weight of the edge
at a specific point is encoded in the brightness of the pixel;
different folding strategies such as row-by-row, column-by-
column, diagonal, etc. are possible.
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radially distributed radially layered stackedsmall multiples

Figure 11: Schematic illustrations of layered matrices ap-
proaches; three shades of blue symbolize three time steps.

II.b.2. Layered Matrices Instead of split-
ting the cells of a matrix, adjacency matri-
ces can be juxtaposed or layered on a time-

line. While the straightforward approach is to use adjacency
matrices as small multiples (Figure 11, small multiples),
there are a couple of more sophisticated approaches: The
TimeRadarTrees approach [BD08, BHW11] radially layers
the time steps encoding the list of edges. Details can be
read from radial thumbnail images attached to each cir-
cle segment representing a vertex; these thumbnails form
a kind of distributed matrix representation (Figure 11, ra-
dially distributed). A radially layered approach by Vehlow
et al. [VBSW13] literally bends the matrices of each time
step into rings of a circle (Figure 11, radially layered).
Cubix [BPF14b] stacks 2D matrices into 3D (Figure 11,
stacked) and provides different small-multiples representa-
tions where adjacency matrices or other slices of the 3D ma-
trix are juxtaposed.

III. Hybrid (Animation, Timeline)

While most dynamic graph visualization
techniques can be unambiguously classi-
fied as either using animation or using a

static timeline, a few approaches combine both mappings
of time. The combination of the two time representations
can, however, follow different strategies in those hybrid ap-
proaches. We consider as hybrid ones only those strategies
that use both representations closely connected and can-
not easily be split into independent techniques. Hadlak et
al. [HSS11] suggest small in situ visualizations to be inte-
grated into a larger visualization; in that way also animated
diagrams can be embedded into a timeline. Sallaberry et
al. [SMM12] use a timeline-based, aggregated representa-
tion of cluster evolution to navigate through an animated
node-link diagram. Beck et al. [BBV∗12] animate long se-
quences of graphs as a moving timeline representation based
on Parallel Edge Splatting. DiffAni [RM13] allows the user,
for instance, to interactively aggregate parts of a timeline
representation into animations; the authors present a taxon-
omy of hybrid approaches that can be systematically con-
structed from small multiples, difference representations,
and animation—DiffAni supports arbitrary combinations.

Figure 12: Distribution of time representations and graph
visualization paradigms among evaluation (left) and appli-
cation publications (right).

6. Evaluation

Most papers we collected contain some sort of evaluation
(Figure 5, category evaluation). Nevertheless, most evalua-
tions are ‘only’ case studies, which are a rather lightweight
form of evaluation not necessarily involving users (86 out of
129 publications). In contrast, some papers specifically focus
on evaluation (25 publications, Figure 5, category type). This
section primarily discusses insights gained from these evalu-
ation papers, but also reflect some interesting evaluation re-
sults from technique or application papers. The section is
structured according to different types of evaluation (Table 2
and Figure 5, category evaluation). Since surveys on the field
have been already discussed in Section 2, they are omitted
here. Also case studies and expert reviews being lightweight
evaluation techniques are not discussed in further detail. Fig-
ure 12 (left) shows that most evaluation approaches focus on
animated node-link diagrams, but only few on timeline rep-
resentations; matrix visualizations are not yet evaluated in
the context of dynamic graphs.

6.1. Evaluation Frameworks

Visualizations are explorative analysis tools and often do
not address a single task, but families of tasks. For evaluat-
ing visualization approaches, however, it should be clarified
which tasks are addressed in the evaluation; a task taxon-
omy can help selecting appropriate tasks. Extending a task
taxonomy for static graphs [LPP∗06], the taxonomy by Ahn
et al. [APS13] collects and structures tasks by three dimen-
sions: entity (granularity such as nodes and links, groups,
or complete network), property (topology of entities and
domain-specific attributes), and temporal feature (states over
time); these dimensions and their subcategories span a de-
sign space of tasks. Bach et al. [BPF14a] introduce an alter-
native taxonomy dividing tasks into temporal tasks (when),
topological tasks (where), and behavioral tasks (what). A
further tool for evaluation is identifying desired properties of
the visualization, which are often called aesthetic criteria in
context of graph visualization. While many of those criteria
were discussed and tested for static graphs [BRSG07], Beck
et al. [BBD09, BBD13] extend these criteria to dynamic
graph visualization and suggest three dimensions grouping
the criteria: general aesthetic criteria, dynamic aesthetic cri-
teria, and aesthetic scalability criteria. These criteria dimen-
sions can be used for evaluating qualities of dynamic graph
visualizations and find the right visualization technique for a
given set of tasks and datasets [BBD13].
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6.2. Algorithmic Evaluation

A rather technical method of evaluation is measuring char-
acteristics of the layout algorithm. For instance, Frishman
and Tal [FT04] compare runtime, node density, and clus-
ter characteristics of their online approach for drawing com-
pound graphs to other approaches—the results indicate that
their approach better discerns clusters. For another online
approach, Frishman and Tal [FT08b] follow a similar evalu-
ation scheme and provide evidence that their approach main-
tains the mental map well and its implementation on the
GPU is more than a magnitude faster than a CPU imple-
mentation. The same approach is applied by Gorochowski
et al. [GdBG12], however, combining it with a visual analy-
sis of the sample data because not all important features are
covered by the employed set of metrics. Other approaches as
well measure runtime performance [FWSL12], preservation
of the mental map [CTB13, FWSL12, HMHU13], or clus-
ter quality [LSCL10]. While evaluation constitutes only a
part of the above papers, Brandes and Mader [BM12] focus
only on an algorithmic evaluation of offline node-link ap-
proaches: they contrast layout stability to individual layout
quality and conclude that only linking nodes of adjacent time
steps provides better results than positioning nodes at or near
fixed positions.

6.3. User Studies

While algorithmic evaluation provides first insights into the
characteristics of a visualization, finally deciding whether a
technique is helpful requires involving users. In controlled
experiments, different parameters of a visualization tech-
nique can be tested or two approaches might be compared
against each other under controlled conditions. We group the
studies according to research question they investigate.

Mental Map: The role of the mental map has been dis-
cussed since the first works on dynamic graph visualization
and is probably their best evaluated aspect. While we briefly
summarize results of related studies, Archambault and Pur-
chase [AP13] review studies on the mental map in much
greater detail. In a first study, Purchase et al. [PHG07] test
different degrees of preserving the mental map for a hierar-
chical node-link layout and find a positive effect of mental
map preservation for some of the tasks. However, in similar
studies, Purchase and Samra [PS08] and Saffrey and Pur-
chase [SP08] cannot confirm positive effects of preserving
the mental map but, in contrast, find that favoring a good in-
dividual layout tends to produce better results. Further, Ar-
chambault and Purchase [AP12] do not detect significant ef-
fects of preserving the mental map. Ghani et al. [GEY12]
vary the layout between fixed positions (perfect mental map)
and individually optimized layouts (no mental map); their re-
sults, however, show that the mental map condition performs
better. Hence, although several studies have been conducted
so far, the role of the mental map is not yet clear, but at least

there are indications that its role might have been overesti-
mated in the literature.

Animation vs. Timeline: A central question that is re-
flected by the two main categories of our taxonomy is the
representation of time—are animated approaches better than
timeline-based ones, or vice versa? For a graph with time-
varying node attributes visualized as a node-link diagram
with static positions, Saraiya et al. [SLN05] compare an an-
imated slider solution to an approach with small time-series
visualizations in the nodes: they observe better performance
of participants for the animated approach when only one or
two points in time need to be studied, but better results for
the timeline approach for tasks involving more time steps.
Farrugia and Quigley [FQ11] contrast an animated node-link
diagram to a static approach showing node-link diagrams in
a grid (timeline) based on the same node layout; for the in-
vestigated time-related tasks, the static approach generally
tends to provide better performance with respect to error
rates and response time. With a similar experiment design,
Archambault et al. [APP11a] also find generally quicker
response times for the timeline conditions; but for some
tasks related to the appearance of entities, animation pro-
duces lower error rates. In a qualitative study, Boyandin et
al. [BBL12] further show that animation tends to reveal more
findings on adjacent time steps while small multiples foster
the discovery of patterns lasting over longer periods. In con-
clusion of these studies, timeline-based approaches seem to
be preferable for tasks involving more than two time steps;
for other tasks, the studies do not yet provide a clear pic-
ture. As Rufiange and McGuffin [RM13] show, hybrid ap-
proaches mixing animation and timeline, under certain con-
ditions, can produce better results.

Specific Approaches: Further, some specific approaches
were evaluated, either varying a visualization parameter or
comparing two approaches against each other. Elmqvist and
Tsigas [ET03] show that their timeline-based node-link ap-
proach works better than Hasse diagrams for visualizing
the information flow between interacting software processes
with respect to most tasks. Rey and Diehl [RD10] inves-
tigate animation speed and labeling in animated node-link
diagrams and find that an interactively selectable presenta-
tion speed does not have a positive effect on comprehension
performance, but that always showing labels instead of re-
trieving labels only on demand is beneficial. Archambault et
al. [APP11b] test the importance of explicitly encoding dif-
ferences in node-link diagrams for two animated approaches
and a small multiples approach; difference maps help for cer-
tain comparison-related tasks and are preferred by the partic-
ipants. For another difference visualization approach, Zaman
et al. [ZKS11] also find conditions where it outperforms an-
imation. Bach et al. [BPF14a] compare their animated node-
link approach GraphDiaries to simpler approaches without
staged-animation or without animation at all; their results
provide some evidence that animation is helpful and staged-
animation tends to further improve task performance.

c© The Eurographics Association 2014.



F. Beck, M. Burch, S. Diehl & D. Weiskopf / The State of the Art in Visualizing Dynamic Graphs

7. Application

Dynamic graph visualizations can be applied to various
datasets from very different domains. In this section, we
present in particular those publications classified as appli-
cation papers, but occasionally also reference technique pa-
pers that put a special focus on a certain application. Despite
the variety of application scenarios, only few mature tools
are readily available for dynamic graph visualization: both
Gephi [BHJ09] and Commetrix [Tri06] show animated node-
link diagrams and provide features for filtering, clustering,
and computing network metrics. Selecting only the applica-
tions papers in our database, we see in Figure 12 (right) that
almost only node-link diagrams are used, but in combination
with both animation and timeline representations.

Social Data: With the increasing popularity of social me-
dia, a variety of datasets of social networks became avail-
able and a new area of research formed around this topic.
A challenge in this context is to visualize the dynamics and
evolution of these networks. Moody et al. [MMBd05] mo-
tivate the use of dynamic graph visualization for social net-
work analysis and provide initial examples of how animated
node-link approaches can be used for visualizing these net-
works. Bender-deMoll and McFarland [BdM06] present a
framework for testing different animated node-link layouts
with respect to this application. Social network metrics can
be used to specialize and augment graph layouts [CTB13].
Brandes et al. [BIM12] discuss the visualization of analy-
sis models for temporal effects in social networks. Specific
types of dynamic social networks that have been investi-
gated are, for example, textual online conversations such as
chats [PT10], online communities [ATMS∗11], the activity
and interest of bloggers [IYTK12], the development of char-
acter relationships in literature [IA12,OKK13], or the propa-
gation of microblogging messages [LQC∗13]. Studying the
evolution of these networks might support answering soci-
ological and psychological questions, could help historians
and literature scholars, but may as well act as an end-user
tool to retrieve facts from social media, for instance, to find
relevant news or people.

Documents: Texts and documents can be related through
different kinds of connections such as citations, hyper-
links, similar content, etc. If documents are created or ex-
isting ones are changed, these connections change over
time. For researchers, quite natural applications are li-
braries of scientific publications, for instance, visualiz-
ing co-authorship [EHK∗04a, Rei10, YAPM08], connec-
tions between research areas [EHK∗04a], co-citation net-
works [Che06] (i.e., publications cited by the same other
publication), or semantic similarity of content [ABPdO12].
But, of course, the evolution of other document collections
can be visualized as well, such as hyperlink structures be-
tween webpages [TK05, YAPM08], semantic relationships
between retrieved entities [SNF10], or between messages
in news streams [GHN13]. Since documents have a social

context (authors, readers, distributors, etc.), there is certain
overlap with social data—whether people or entities form
the nodes of the dynamic graph may act as a distinguishing
criterion.

Software Engineering: Among the first, dynamic graph
visualizations were applied to software-related data. Already
in 1995, Kimelman et al. [KLRZ95] discuss the problem of
visual complexity for visualizing program executions. Also
visualizing the execution dynamics of software, others de-
pict the information flow between processes [ET03], ob-
ject interactions [GLW06], dynamic call graphs [BMR∗12,
BBV∗12], or objects migrating between hosts [FT08a]. In
addition to execution, another dynamic aspect of software
that can be visualized is its evolution—the changes ap-
plied to software systems over time: for instance, the evo-
lution of call, inheritance, or flow graphs [CKN∗03], of co-
changed files [BH06], or author–file relationships [OM08,
OM09]. Hence, software systems have different dimensions
of time—execution and evolution—and relevant graph data
can be derived and combined from multiple sources.

Others: There are various further applications of dynamic
graphs and their visualization. In research, for instance in
context of biology, evolving metabolic pathways [RUK∗10],
simulated chemical reaction networks [JSS∗12] and un-
certainties therein [VHK∗13], or protein interaction net-
works [BFL12] are studied. Psychology and user interface
research may profit from depicting eye gaze data as dy-
namic graphs recorded in eye-tracking studies [BBR∗14,
HEF∗13]. Computer scientists can investigate the evo-
lution of the Internet [BBP08] or anomalies in com-
munication networks [LSW13]. Business researchers and
mangers are supported in analyzing contagion in finan-
cial networks [vLDBF13] and movements in stock port-
folios [DE02]. Dynamic graph drawing may even reach
a wider audience when depicting popular topics such as
movie–actor affiliations [BHP06] or international soccer
matches [AFH∗10]. In essence, every application where
static graph visualization can be applied is a candidate for
also leveraging the visualization of dynamic graphs—static
graphs are often just a simplification of dynamic ones.

8. Research Challenges

The overview of the field forms a good basis for discussing
the main challenges of, and possible directions for future re-
search. Our tagging of publications and taxonomy of tech-
niques allow us to see which areas have already been studied
in detail and which areas are just covered by few works; the
survey of evaluation results identifies answered and unan-
swered questions; the discussed applications point towards
areas where dynamic graph visualization might have a con-
siderable practical impact. Specifically for the visualization
of multivariate dynamic graphs, Abello et al. [AAK∗14] al-
ready discussed open problems, partly overlapping with the
research challenges introduced in the following.
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Evaluation: A first, quite generic research challenge is
conducting evaluations. As in other areas of information vi-
sualization, only a few questions have been evaluated so
far. Although most efforts have concentrated on the impor-
tance of the mental map, it is still unclear when and to
what extent the mental map needs to be preserved. Only
a few other questions have been investigated. Hence, it is
still unanswered which visualization technique is suitable
for which application. Also, setting the parameters of the
different techniques is rarely explored, such as magic con-
stants of layout and clustering algorithms, color-mapping,
or sampling rate and time aggregation. Moreover, questions
of perception are relevant, for instance, the users’ cognitive
load watching an animation, effects of attention, or typical
misinterpretations of visual elements.

Visual Scalability: A further general challenge in infor-
mation visualization, which also applies here, is visual scala-
bility: with an increasing amount of displayed data, the gen-
erated diagrams should remain readable. In most of the dis-
cussed applications, datasets should not be limited to a few
dozens of vertices. For static diagrams, already some scala-
bility comparisons have been conducted, for instance, con-
trasting node-link and matrix diagrams [GFC05, KEC06].
While, in static graphs, the number of nodes and the density
of edges are the two crucial parameters for scalability, Beck
et al. [BBD09] argue that the number of time steps needs to
be considered as a third dimension when studying dynamic
graph visualizations. So far, scalability has only played a mi-
nor role in designing most dynamic graph visualization ap-
proaches, although it has been already discussed in depth for
static graphs [vLKS∗11].

Hybrids: Some approaches already started to combine
different techniques, such as animation and timeline rep-
resentations (Taxonomy Category III.) or different variants
of timeline-based node-link diagrams (Taxonomy Category
II.a.4.). However, many more possible hybrids exist between
different categories of the taxonomy. While not all combi-
nations are sensible, there are a number of hybrid variants
that appear to be promising: for instance, the combination of
node-link diagrams and matrices have been already success-
fully explored for static graphs [HF07, HFM07]. Animating
a matrix diagram should also work if the animation process
is designed with similar care as in those works describing the
transition problem for node-link diagrams (Taxonomy Cate-
gory I.a.3.). Further, combinations of animation and timeline
approaches have not yet been fully explored.

Extended Data Dimensions: While dynamic graphs add
a time dimension to static graphs, dynamic graphs them-
selves can be extended by other dimensions. As it is the
case when we move from static to dynamic graphs, adding
a new data dimension usually requires the visualization
to change considerably. What has been already studied, is
adding a hierarchy to the vertices of the graph (Taxonomy
Category I.b.1. and partly II.a.1.). Yet, most of these ap-

proaches assume that the hierarchy is constant or at least
only gradually changing. An open question is how to vi-
sualize a hierarchical structure that changes more signifi-
cantly along with the dynamic graph. Additional data dimen-
sions that have only been partly explored are dynamic mul-
tivariate graphs [BN11, YEL10, AAK∗14], dynamic graphs
with uncertainty information [VHK∗13], and geo-located
graphs [HEF∗13]. Finally, the effects of using continuous
time with arbitrary fine sampling rates, rather than dis-
cretized time, are largely unexplored.

Interaction: While most timeline-based approaches pro-
duce static images, animated node-link diagrams inherently
require interactive displays. Although the first works in the
field already investigated smooth navigation in graphs, this
focus seems to have been lost over the years. Navigation
in dynamic graphs can have multiple dimensions: users
might navigate in space (i.e., the static graph) as well as
in time. As recent works with a special focus on naviga-
tion have shown, interaction could help integrate different
modes [RM13, HSS11] or filter down the data to a manage-
able size [AHSS13]. Working with several views introduces
further challenges, such as, visually mapping and synchro-
nizing multiple representatives of the same objects between
different visualizations. Finally, annotating and editing a dy-
namic graph structure is not well studied. All these interac-
tive features and combinations of different views and visu-
alizations can be integrated into consistent visual analytics
approaches.

Applications: Without application, visualization would
lose its purpose. As discussed in Section 7, there are a
number of areas where different dynamic graph visualiza-
tions have been already applied. Looking at the recent de-
velopment, we see that still new applications have arisen,
for instance, the analysis of characters in literature [IA12,
OKK13], understanding financial and bio-medical con-
tagion networks [vLDBF13], or visualizing eye-tracking
data [BBR∗14, HEF∗13]. This steady progress already sug-
gests that there are still more areas to be explored for dy-
namic graph visualization. In particular, looking at the wide
variety of applications that static graphs have, we will prob-
ably find many examples where dynamics are important but
have not been studied by means of visualization yet. As
datasets often have application-specific characteristics and
there exist application-specific requirements, an adaption of
existing techniques might not be straightforward but could
require new research.

9. Conclusions

This work presented the state of the art in visualizing dynam-
ically changing relational data. Building on previous work
in the graph drawing and information visualization commu-
nities, the visualization of dynamic graphs has become an
active and constantly growing research discipline. While,
initially, animated node-link diagrams dominated the re-
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search, timeline-based approaches gained more importance
recently. First empirical evaluations of the approaches were
conducted. With the increasing availability of temporal data,
dynamic graph visualizations have been adapted to many ar-
eas of application. By systematically collecting and catego-
rizing the literature, we structured the field and collected the
works spread over different areas of research and communi-
ties. This review makes approaches more comparable as it
points out similarities and differences using a consistent tax-
onomy. Studying the development of the field based on the
collected data, there are no indicators that research within
the area has met an end. On the contrary, new visualiza-
tions are still introduced, evaluation is only in its infancy,
and there are many open challenges and interesting research
problems.
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