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Abstract
Eye tracking technology is becoming easier and cheaper to use, resulting in its increasing application to numerous
fields of research. The data collected during an eye tracking experiment can be analyzed by statistical methods
and/or with visualization techniques. Visualizations can reveal characteristics of fixations, saccades, and scanpath
structures. In this survey, we present an overview of visualization techniques for eye tracking data and describe their
functionality. We classify the visualization techniques using nine categories. The categories are based on properties
of eye tracking data, including aspects of the stimuli and the viewer, and on properties of the visualization techniques.
The classification of about 90 publications including technical as well as application papers with modifications of
common visualization techniques are described in more detail. We finally present possible directions for further
research in the field of eye tracking data visualization.

Categories and Subject Descriptors (according to ACM CCS): [General and reference]: Document types—Surveys and
overviews [Human-centered computing]: Visualization—Visualization techniques [Human-centered computing]:
Visualization—Visualization design and evaluation methods

1. Introduction

Eye tracking has become a widely used method to analyze
user behavior in marketing, neuroscience, human-computer
interaction, and visualization research [Duc02, TCSC13].
Apart from measuring completion times and recording accu-
racy rates of correctly given answers during the performance
of visual tasks in classical controlled user experiments, eye
tracking-based evaluations provide additional information
on how visual attention is distributed and changing for
a presented stimulus. Eye tracking devices record gaze
points of a participant as raw data. Afterwards, these gaze
points can be aggregated into fixations and saccades for
measuring which areas on the stimulus have been focused
on. If necessary, areas of interest (AOIs) can be defined to
concentrate the analysis on specific regions on the stimulus.

Due to the wide field of applications of eye tracking and
various kinds of research questions, different approaches
have been developed to analyze eye tracking data such as sta-
tistical algorithms (either descriptive or inferential) [HNA∗11],
string editing algorithms [PS00, DDJ∗10], visualization-
related techniques, and visual analytics techniques [AABW12].
Regardless of whether statistical or visual methods are
used for eye tracking data analysis, a large amount of data
generated during eye tracking experiments has to be handled.

For example, a user experiment with 30 participants, three
types of tasks, and 30 stimuli for each task leads to 2,700
scanpaths in total. Each scanpath typically consists of a
large number of fixations and every fixation aggregates gaze
points. The number of these gaze points depends on the
recording rate of eye tracking devices. In this example, more
than 10,000 fixations and more than 100,000 gaze points
have to be stored, formatted, and analyzed to finally confirm
or reject one or more hypotheses. Besides analyzing eye
tracking data with respect to quantitative metrics such as
fixation count, distribution, and position, saccadic amplitude,
and pupil size, semantic information about which areas on
the stimulus were focused on gives additional information to
understand viewing strategies of participants.

Where statistical analysis mainly provides quantitative
results, visualization techniques allow researchers to analyze
different levels and aspects of the recorded eye tracking
data in an explorative and qualitative way. Visualization
techniques help analyze the spatio-temporal aspect of eye
tracking data and the complex relationships within the data.
This more qualitative exploration aims at finding hypotheses
that can be investigated with statistical methods later on.
Due to the increasing complexity of tasks and stimuli in eye
tracking experiments, we believe that visualization will play
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Figure 1: Histogram of all publications of this survey, relevant for eye tracking data visualization techniques. The number of
published articles, conference papers, and books has strongly increased during the last decade.

an increasingly important role in future eye tracking analysis.
Thus, the contribution of the survey is manifold: First, based
on a taxonomy for eye tracking terms, a classification sys-
tem for stimuli and visualization techniques is formulated.
Second, we assign papers from the literature to those classes.
Third, based on these results, we identify questions for future
development of eye tracking visualization techniques.

Evaluation has become an important step in the develop-
ment of new visualization techniques. Eye tracking is one
means of evaluating those newly developed approaches.
Thus, analyzing eye tracking data with visualization tech-
niques is just a logical step that followed. The number of
published articles, conference papers, and books about eye
tracking visualizations has strongly increased during the last
decade. Figure 1 shows a histogram of all relevant publica-
tions with visualization techniques for eye tracking data, that
are included in this survey. Especially, after the first IEEE
Symposium on Information Visualization in 1995 [GE95],
the number of visualization techniques for eye tracking has
steadily increased. However, so far a comprehensive survey
of visualization techniques for eye tracking, structuring and
discussing the approaches is still missing. Since eye tracking
is used in a wide application range and new challenges arise,
such as eye tracking in the 3D environment, an exhaustive
survey is necessary to find missing visualization techniques.

Due to the wide application range of eye tracking, the
development of visualization techniques has become an
interdisciplinary challenge that requires a comprehensive
literature research over many different disciplines. To sat-
isfy this requirement, we reviewed the main visualization
and visual analytics conferences (VIS, EuroVIS, EuroVA),
the ACM Digital Library, and the IEEE Xplorer Digital
Library, but also the top conference on eye tracking research
(ETRA), and main journals of usability research (Journal of
Human Factors), psychology (Behavior Research Methods),
and cognitive sciences (Cognitive Science Journal). This
literature research resulted in about 90 papers found on eye
tracking data visualization. To allow the reader to better find
adequate visualization techniques for his or her analysis,
we subdivided the visualization techniques into three main

classes: point-based visualization techniques, AOI-based
visualization techniques, and visualization techniques using
both. Next, we tagged the visualization techniques with
information about stimulus type, in-context visualizations,
animated visualizations, interactive visualizations, and active
stimulus content. A detailed description of this classification
will be given in the next section. The main part of the paper
is the presentation of the different visualization techniques
with respect to this classification system. At the end, we will
discuss possibilities for future research.

2. Taxonomy

Before we present our taxonomy classifying visualization
techniques, we first define the basic terminology related to
eye tracking data (Section 2.1). The taxonomy is subdivided
into two categories: those related to stimuli of eye tracking
experiments (Section 2.2) and those related to visualization
techniques (Section 2.3). Other taxonomy papers target
areas different from ours, e.g., taxonomies restricted to the
stimulus alone [SNDC09], the dimensionality of the visu-
alization [Špa08], or the eye tracking data [RTSB04]. Our
taxonomy includes more categories to obtain a fine-grained
categorization of the visualization techniques and to find out
what visualization techniques might be missing.

2.1. Terminology

Eye tracking devices record gaze points performed by a
participant on a stimulus. The recording rates depend on
the characteristics of the devices. State-of-the-art devices
allow rates between 60 and 120 Hz. Some newer high speed
eye trackers support recording rates of 240 Hz or more. The
recording rate specifies how many gaze points are recorded
per second. However, eye tracking research is not using raw
gaze points. Rather, different data types which are shown
in Figure 2 can be distinguished and will be defined in the
following in more detail. For each data type different metrics
are used in an eye tracking analysis. The most important
metrics for each data type will be explained shortly. A
comprehensive collection of eye tracking metrics can be
found in the book by Holmqvist et al. [HNA∗11].
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Figure 2: Gaze points are spatially and temporally aggregated into fixations. Fixations are connected by saccades and have a
certain duration represented by the radius. A temporal order of fixations is a gaze, however, only if the fixations are within an
AOI. An AOI is a region of specific interest on the stimulus. A saccade from one AOI to the next is called a transition. A complete
sequence of fixations and saccades is called a scanpath.

Fixation. A fixation is an aggregation of gaze points. Gaze
points are aggregated based on a specified area and timespan.
The aggregation area is usually about 20 to 50 pixels, the
timespan between 200 and 300 ms [HNA∗11]. Common
metrics for fixations are the fixation count (i.e. number of
fixations), the fixation duration in milliseconds, and the
fixation position given as x- and y-coordinates in pixel.

Saccade. Saccades describe a rapid eye movement from one
fixation to another. They typically last about 30 to 80 ms and
are the fastest movement the human body can perform. Dur-
ing this timespan visual information is suppressed [HNA∗11].
Typical metrics are the Saccadic amplitude (i.e. the distance
the saccade traveled), the saccadic duration in milliseconds,
and the saccadic velocity in degrees per second.

Smooth Pursuit. During the presentation of dynamic stim-
uli smooth pursuits can occur. They occur unintentional and
only if viewers follow a movement in a presented stimulus.
The velocity of the eye during smooth pursuits is about 10 to
30 degrees per second [HNA∗11].

Scanpath. A sequence of alternating fixations and saccades
is called a scanpath. A scanpath can give information about
the search behavior of a participant. An ideal scanpath
would be a straight line to a specified target [CHC10]. De-
viance from this ideal scanpath can be interpreted as poor
search [GK99]. Scanpath metrics include the convex hull

(i.e. which area is covered by the scanpath), scanpath length
in pixels, or scanpath duration in milliseconds.

Stimulus. A stimulus can be any visual content presented
to participants during an eye tracking experiment. Typically,
static and dynamic stimuli, with either active or passive con-
tent are differentiated. Usually, 2D stimuli are presented to
participants. However, in recent years, 3D stimuli have be-
come a focus of research as well.

Area of Interest. Areas of interest (AOIs) or regions of
interest (ROIs) are parts of a stimulus that are of high im-
portance for a hypothesis. In 3D stimuli, AOIs can also be
models or objects of interest (OOIs). For dynamic stimuli,
dynamic AOIs have to be defined. AOIs can either be created
beforehand or after an eye tracking experiment. Usually,
AOIs are created based on the semantic information of
the stimulus. A transition is a movement from one AOI to
another. Typical metrics for AOIs are the transition count (i.e.
number of transitions between two AOIs), the dwell time
within an AOI in milliseconds, and the AOI hit which defines
if a fixation is within an AOI or not.

2.2. Stimulus-Related Categories

The first part of the taxonomy is based on a categorization
of stimuli. The type of stimulus can have a great influence
on the choice and design of a visualization technique. The
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first categorization divides stimuli into point-based and AOI-
based data. Furthermore, stimuli can be distinguished as be-
ing static or dynamic, with active or passive content, and rep-
resenting 2D or 3D content. The viewing task would be an-
other type for classification, however it will not be included
in our taxonomy.

Point-based versus AOI-based. Eye tracking data of a
stimulus can be evaluated in a point-based or AOI-based
fashion [AABW12]. Point-based evaluation of eye tracking
data focuses on the overall movement and its spatial or
temporal distribution. Here, a semantic annotation of data
is not required. Depending on the stimulus, a point-based
evaluation is not always sufficient for specific analysis
tasks (e.g., comparison of asynchronous eye tracking data).
Therefore, an annotation of identified AOIs on the stimulus
can be used for applying AOI-based metrics. In AOI-based
metrics the transition and relation of AOIs is of interest. This
classification will be used as the first level to distinguish
between different visualization techniques.

Static versus Dynamic Stimuli. Static stimuli can, for ex-
ample, be static visualizations, pictures, or advertisements
where the stimulus does not change. Dynamic stimuli can
be videos, dynamic visualizations, or real-world scenarios.
Some visualization techniques are presented as an overlay on
the stimulus and can be used with static and dynamic stimuli.
Other visualization techniques depend on a static stimulus
and cannot be applied to dynamically changing content.

Passive versus Active Stimulus Content. The viewer’s
mode of interaction is an important factor for data visualiza-
tion and how the graphical user interface for a visualization
technique is designed. Viewers can watch presented stimuli
passively without interfering actions. The stimulus can be
either static or dynamic, i.e., the presentation of pictures
or videos. A synchronization between recordings of dif-
ferent viewers is possible with minor effort, allowing one
to compare multiple viewers and search for similarities or
differences in their scanpaths. Viewers can also actively influ-
ence the stimulus by their actions, here the stimulus becomes
dynamic. Eye tracking of interactive applications are good
examples of individual recordings that result from the active
integration of the viewer into the experiment. Comparing
these individually recorded data sets is a non-trivial task,
since a synchronization of the data is difficult [Duc07].

2D versus 3D Stimuli. 2D stimuli have been mostly in-
vestigated and can, for example, be static or dynamic 2D
visualizations, videos, or web pages. Stimuli representing 3D
models or objects are being investigated more in recent years.
Here, 3D stimuli can either be represented as stereoscopic
images on 3D screens, or using head-mounted eye trackers in
real or virtual world scenarios. A challenge with 3D stimuli
is mapping the fixations onto the correct geometrical model
of the stimulus.

Viewing Task. Although a given task during an eye tracking
experiment has a significant influence on the eye movement
of viewers [AHR98], we decided not to use the task as a
categorization factor, since many visualization techniques
do not depend explicitly on the given task for a successful
interpretation of the data.

2.3. Visualization-Related Categories

There are numerous taxonomies for visualizations based
on different aspects. Some taxonomies focus on the data
dimension or type [Chi00, TM04], on interaction techniques
[YaKSJ07, Shn96], on the visualization task [BM13], or on
specific visualization types [LPP∗06, CM97]. However, for
eye tracking visualizations those taxonomies are either too
general or too concrete. Our taxonomy uses a categorization
based on the eye tracking data types and the number of
users represented. We distinguish between animated and
static, 2D and 3D, in-context and not in-context, as well as
interactive and non-interactive visualizations. Lastly, we
want to introduce the field of visual analytics as one means
to evaluate eye tracking data.

Statistical Graphics. The most commonly used visualiza-
tion techniques for eye tracking data are statistical diagrams
such as line charts, bar charts, box plots, or scatter plots.
These visualization techniques can be used for analyzing eye
tracking data quantitatively. This survey will mostly focus
on approaches for qualitative or explorative data analysis.
Statistical graphics used for eye tracking data are only briefly
discussed in Section 3.

Temporal, Spatial, and Spatio-Temporal Visualizations.
The visualization techniques in this survey will be classified
as either temporal, spatial, or spatio-temporal. The temporal
dimension focuses on time and is usually visualized with
a timeline as one axis. The spatial dimension of the data
focuses on the x-, y-, and if relevant, the z-coordinates of
fixations. For AOI-based visualization techniques, the spatial
domain contains the AOIs and their relation to each other.
The third data type is the combination of both, called spatio-
temporal. Here, temporal as well as spatial aspects of the data
are included into the visualization approach.

Static Versus Animated Visualizations. Static visualiza-
tions usually use a time-to-space mapping of the data. For
dynamic stimuli creating a static visualization often requires
predefined AOI definitions, since the spatial linking to the
dynamically changing content is commonly hard to achieve.
Animated visualizations use a time-to-time mapping of
the data by sequentially presenting certain points in time
from the data. This allows in-context visualizations with
an overlay of the visualization over the stimulus, keeping
the stimulus data and the visualization in the same domain.
However, this requires quite complex layout algorithms
that follow aesthetic drawing criteria [Pur97] for each static
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image in the sequence. Additionally, aesthetic criteria for
animation [BBD09] have to be applied to preserve a viewer’s
mental map.

Single User Versus Multiple Users. An important factor
for eye tracking analysis is the number of users represented
in a visualization technique. Representing single users allows
the analyst to inspect the viewing behavior of one participant.
However, visualizing multiple users at the same time can
allow one to find strategies of groups, but these represen-
tations might suffer from visual clutter if too much data is
represented at the same time. Here, optimization strategies,
such as averaging or bundling of lines might be used, to
achieve better results [HFG06, HEF∗13].

2D Versus 3D Visualizations. 2D visualizations represent
only two different data types at the same time, for example,
one spatial dimension and the temporal, or both spatial di-
mensions. Usually, eye tracking data from 2D stimuli is rep-
resented with 2D visualizations. Representing 2D stimuli us-
ing 3D visualizations can be helpful as in the case of space-
time cubes. Here, the spatial as well as the temporal data is
visualized. However, the third dimension has to be handled
with care because of perceptual issues related to 3D visual-
izations. Visualizing 3D data in a 2D domain removes one
dimension and leads to data loss. However, this can make
the analysis easier. To avoid data loss and represent all data
domains, 3D visualization techniques are developed for 3D
eye tracking data.

In-Context Versus Not In-Context Visualizations. In-
context visualizations link stimulus and visualization with
each other, such as overlays over the stimulus or AOIs with
thumbnail images. This allows a mental map preservation
as the stimulus is shown in the background. Visualization
methods that do not include the stimulus in the visualization
are not in-context visualizations. This is often the case
for AOI-based visualization techniques. Not in-context
visualizations have the problem that the topology of the AOIs
and the mental map is lost. However, if the relation between
AOIs is more important loosing the topological information
is an acceptable trade off.

Interactive Versus Non-Interactive Visualizations. Non-
interactive visualizations usually represent the data with a
fixed set of parameters. The user has no option to influence
those parameters either because there are no options or
because they have been predefined. In contrast, interactive
visualizations allow the user to explore the data beyond what
is represented at the beginning. For example, the user can
navigate through time, zoom and filter the represented data,
or obtain detailed information about the data.

Visual Analytics. When visualization techniques alone
are not able to handle the vast amount of generated eye
tracking data, the emerging discipline of visual analytics

can be a convenient option for explorative data analysis.
Algorithmic concepts such as data mining or knowledge
discovery in databases combined with visualization tech-
niques and the perceptual abilities of the human viewer
can be a good means to uncover common structures or
strategies among the study participants. In the eye tracking
domain, different visual analytics systems have been de-
veloped over the last years. One example of how existing
visual analytics systems can be used with eye tracking
data is described by Andrienko et al. [AABW12]. The
authors investigated how visual analytics approaches for
geographic information science (GIScience) can be adapted
for analyzing spatio-temporal data.

2.4. Classification Structure

Based on the above categories, we divide the papers of eye
tracking visualizations into two main subsets that differen-
tiate whether the visualization technique is for point-based
or AOI-based analysis. On a second level, we will further
segment the visualization techniques based on temporal,
spatial, and spatio-temporal aspects of visualization. Table 1
gives an overview of all eye tracking visualizations that
introduced a new visualization technique, an improvement
of an existing visualization technique, or that adapted an
existing visualization technique for its application to eye
tracking data. The table also classifies the visualization
techniques based on the above mentioned two levels. The
upper part contains the point-based visualization techniques
that will be described in Section 4 and the lower part of the
table shows the visualization-related visualization techniques
described in Section 5. The middle part of the table contains
papers from authors which present approaches where one is
point-based and another AOI-based. Each approach is then
described in the corresponding section. The individual sec-
tions on point-based and AOI-based visualization techniques
are further subdivided into temporal, spatial, and spatio-
temporal visualization techniques. This is also represented
by the first column of the table. In the case of point-based
visualization techniques, the temporal approaches are namely
timeline visualizations, spatial approaches are attention
maps, and the spatio-temporal approaches are subdivided
into scanpaths and space-time cube visualizations as they
represent two different concepts. In the AOI-based section,
first timeline as temporal approaches, and then relational
visualization techniques as spatial approaches are discussed.
The spatio-temporal techniques are mainly concerned with
3D data and are not included due to space limitations. 3D
has just recently started to be investigated in eye tracking re-
search, and therefore is not the focus of most of the research
so far. Therefore, some of the references mentioned in the
table are not described in the text itself. Furthermore, the
table displays all remaining categorizing factors described in
the taxonomy, starting with visualization categories and then
the stimulus categories.
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Table 1: List of all references that introduced a new, an improvement, or an adaption of an existing visualization technique. The
references are classified by the visualization-related and stimulus-related categories described in Sections 2.2 and 2.3.
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Grindinger et al. [GDS10] • ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ • • • ◦ • • ◦
Goldberg & Helfman [GH10c] • • ◦ ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Bojko [Boj09] ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • • ◦ ◦ • • ◦
Velichkovsky & Hansen [VH96] ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • • ◦ ◦ • • ◦
Wooding [Woo02] ◦ • ◦ ◦ • ◦ • • • • • ◦ • • ◦ ◦ • • ◦
Latimer [Lat88] ◦ • ◦ ◦ • ◦ • ◦ • ◦ • ◦ • • ◦ ◦ • • ◦
Kurzhals & Weiskopf [KW13] ◦ • • • • ◦ • • • • ◦ • ◦ ◦ • ◦ • • ◦
Paletta et al. [PSF∗13b] ◦ • • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ • • ◦ ◦ •
Noton & Stark [NS71b] ◦ ◦ • ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ ◦ • • ◦
Ramloll et al. [RTSB04] ◦ ◦ • ◦ • • ◦ • ◦ • ◦ ◦ • ◦ • • ◦ ◦ •
Mackworth & Mackworth [MM58] ◦ ◦ • ◦ • • ◦ • ◦ • ◦ ◦ • ◦ • ◦ • • ◦
Yarbus [Yar67] ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Lankford [Lan00] ◦ ◦ • ◦ • • ◦ • • • ◦ ◦ • • • • • • ◦
Burch et al. [BSRW14] ◦ ◦ • ◦ • • • • ◦ • ◦ ◦ • • ◦ ◦ • • ◦
Hembrooke et al. [HFG06] ◦ ◦ • ◦ • ◦ • • ◦ • ◦ ◦ • • ◦ ◦ • • ◦
Chen et al. [CAS13] ◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Li et al. [LÇK10] ◦ ◦ • ◦ • ◦ • ◦ • • ◦ • ◦ • ◦ • ◦ • ◦
Hurter et al. [HEF∗13] ◦ ◦ • • • • • • ◦ • ◦ ◦ • • • • • • ◦
Dorr et al. [DJB10] ◦ ◦ • • ◦ • ◦ • ◦ • ◦ ◦ • ◦ • ◦ • • ◦
Duchowski et al. [DPMO12] ◦ ◦ • • ◦ ◦ • • ◦ • ◦ ◦ • ◦ • ◦ • • ◦
Duchowski & McCormick [DM98] ◦ ◦ • • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ • • ◦
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Stellmach et al. [SND10b] • • • ◦ • • ◦ • • • • • ◦ ◦ • • ◦ ◦ •
Weibel et al. [WFE∗12] • ◦ • • • • ◦ • ◦ • • • ◦ ◦ • • ◦ ◦ •
Pfeiffer [Pfe12] ◦ • • • ◦ • • ◦ • • ◦ • ◦ ◦ • • ◦ ◦ •
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Špakov & Räihä [ŠR08] • ◦ ◦ ◦ • • ◦ • ◦ • ◦ • ◦ • ◦ ◦ • • ◦
Beymer & Russel [BR05] • ◦ ◦ ◦ • • ◦ • ◦ • ◦ • ◦ • ◦ ◦ • • ◦
Räihä et al. [RAM∗05] • ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ ◦ • • ◦
Kim et al. [KDX∗12] • ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ • ◦ • ◦
Crowe & Narayanan [CN00] • ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Holsanova [Hol01] • ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Itoh et al. [ITS00] • ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ • ◦ • • ◦ ◦ •
Pellacini et al. [PLG06] • ◦ ◦ ◦ • • • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Kurzhals et al. [KHW14] • ◦ ◦ ◦ • ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ • ◦
Burch et al. [BKW13] • ◦ ◦ ◦ • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ • • ◦
Raschke et al. [RCE12] • ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Richardson & Dale [RD05] • ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Tsang et al. [TTS10] • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ •
Blascheck et al. [BRE13] ◦ • ◦ ◦ • • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • • ◦
Goldberg & Kotval [GK99] ◦ • ◦ ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ • ◦ • ◦
Egusa et al. [ETK∗08] ◦ • ◦ ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Itoh et al. [IHN98] ◦ • ◦ ◦ • • ◦ • ◦ ◦ • ◦ • ◦ • • ◦ ◦ •
Schulz et al. [SSF∗11] ◦ • ◦ ◦ • • ◦ • ◦ ◦ • ◦ • ◦ • • ◦ ◦ •
West et al. [WHRK06] ◦ • ◦ ◦ • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ • • ◦
Goldberg & Helfman [GH10b] ◦ • ◦ ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Siirtola et al. [SLHR09] ◦ • ◦ ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
Baldauf et al. [BFH10] ◦ ◦ • • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • • ◦ ◦ •
Duchowski et al. [DMC∗02] ◦ ◦ • ◦ • • ◦ ◦ • • ◦ ◦ • ◦ • • ◦ ◦ •
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Figure 3: Example of a line chart, bar chart, and scatter plot. Each graph represents the same data set.

3. Statistical Graphics

Before we describe the eye tracking visualization techniques
based on our classification, this section summarizes a selec-
tion of statistical graphics that are commonly used to visual-
ize eye tracking data, however are not especially developed
for it. Figure 3 shows an example of a bar chart, scatter plot,
and line chart all representing the same data set.

One of the first papers in eye tracking research uses line
charts to study eye movement characteristics of children in a
TV viewing scenario [GWG∗64]. The authors present sum-
marized time durations of different types of eye movements
such as mini movements, slides, and saccades in a line chart.
Atkins and Zheng [AJTZ12] quantify the difference between
doing and watching a manual task. To this end, they present
results of recorded fixations in two line charts showing values
for x- and y-locations of the fixations. Based on this visual-
ization, the authors then discuss saccadic properties. Smith
and Mital [SM13] use line charts to present values of mean
fixation durations, mean saccadic amplitudes, and other met-
rics over time. Additionally, they also use line charts to sepa-
rately show these metrics for dynamic and static stimuli.

A bar chart is mainly employed to display a histogram of
an eye tracking metric. Convertino et al. [CCY∗03] plot the
percentage of the fixation duration for four different combi-
nations of visualization techniques onto a bar chart. Thereby,
the authors compare the usability of parallel coordinates with
other types of visualizations. To evaluate different methods
of image fusion, Dixon et al. [DLN∗06] present eye location
accuracy with bar charts. A 3D bar chart shows the fixation
distribution mainly around the screen center in a TV viewing
user experiment by Brasel and Gips [BG08].

Scatter plots are commonly used to plot data in a 2D
Cartesian diagram. This type of diagram shows relations
between two values of a sample. Just and Carpenter [JC76]
plot the relation between response latency and angular
disparity. Berg et al. [BBM∗09] compare human vision and
monkey vision. The authors present scatter plots of amplitude
and velocity measurements of saccadic movements for both
species. Additionally, they compared saliency of humans and
monkeys and show results also using a scatter plot.

Box plots are a popular visualization technique to present
statistical distribution. Hornof and Halverson [HH02] ana-
lyze absolute, horizontal, and vertical deviation of fixations
for participants of their experiment to monitor the deteriora-
tion of the calibration of the eye tracker. Dorr et al. [DMGB10]
investigate how similar eye movement patterns of different
subjects are when viewing dynamic natural scenes. To
compare eye movements they employ normalized scanpath
saliency scores and show a boxplot of the computed scores
for different movies.

Another type of statistical graphics is the star plot used by
Goldberg and Helfman [GH10c] to analyze angular properties
of scanpaths and by Nakayama and Hayashi [NH10] to study
angular properties of fixation positions.

4. Point-Based Visualization Techniques

This section comprises all visualization techniques that use
spatial and temporal information of recorded data points (i.e.,
x- and y-coordinates of fixations along with temporal infor-
mation) for visualization directly. Therefore, a definition of
AOIs is not required. These visualization techniques can be
used for the analysis of temporal evolution of the position
of data points, distribution of attention, scanpath analysis, or
spatio-temporal structure of eye tracking data.

4.1. Timeline Visualizations

Timelines are a typical approach to visualize temporal data.
A point-based timeline visualization represents time on one
axis of a coordinate system and eye tracking data on the other
axis. Such plots are usually represented in 2D space. There-
fore, only one image dimension is left for the fixation data
and some reduction from the original x- and y-coordinates
has to be performed. For example, fixation position can
be split into its x- and y-coordinates and each one can be
represented individually as shown in Figures 4 and 5. For
the x-coordinate, time is depicted on the y-axis and for the
y-coordinate, time is shown on the x-axis [GH10c]. This can
be done for static or dynamic stimuli and for one or multiple
participants [GDS10]. Such timeline visualizations reduce
crossings and overlaps of the saccade lines. Furthermore, the
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visualization technique allows a visual scanpath comparison
to measure the similarity of aggregated scanpaths [GDS10].
Additionally, a general overview of scanning tendencies
can be seen such as downward and upward scanning, or
horizontal shifts [GH10c]. However, the separation into x-
and y-coordinates makes it difficult to perceive the combined
behavior in the two spatial dimensions.

Figure 4: Temporal evolution of a scanpath of one partic-
ipant separated into x- and y-direction. On the left side a
scanpath is shown representing only the saccades. In the
middle, the same scanpath is shown representing solely the
y-coordinate. Time is represented on the x-axis. On the left
side, the scanpath represents the x-coordinate. Time is repre-
sented on the y-axis. Figure reprinted with kind permission
from Goldberg and Helfman [GH10c].

Figure 5: Temporal evolution of scanpaths of multiple par-
ticipants. Time is represented on the horizontal axis, and the
vertical fixation position on the vertical axis. Individual scan-
paths are represented by a different color. Figure reprinted
with kind permission from Grindinger et al. [GDS10].

4.2. Attention Maps

For spatial visualization techniques, marking fixation po-
sitions as an overlay on a stimulus is one of the simplest
visualization techniques for recorded eye movements and
was applied to dynamic stimuli as early as in 1958 by Mack-
worth and Mackworth [MM58]. The combined visualization
of this fixation data from different participants and the stim-
ulus is denoted bee swarm [Tob08]. It is usually presented
as an animation to show the temporal changes of fixations.

The aggregation of fixations over time and/or participants
is known under the term attention map, fixation map, or
heat map and can be found in numerous publications as
summarizing illustrations of the analyzed data. The main
purpose of attention maps is to obtain an overview of the
eye movements and identify regions on the stimulus that
attract much attention; the latter is often used to determine
AOIs. There are numerous papers describing how to create
attention maps (e.g., [ŠM07, Bli10]).

Bojko [Boj09] introduces different types of attention maps
depending on the data used, e.g., fixation count attention
maps, absolute fixation duration attention maps, relative
fixation duration attention maps, or participant percentage
attention maps. Each type has its benefits depending on
the data needed for an evaluation. In her paper, guidelines
for using attention maps are described to avoid misuse and
misinterpretation of attention maps. A review of attention
maps is given by Holmqvist et al. [HNA∗11], who further
recommend that attention maps should be used with care.

Classical attention maps are visualized as luminance
maps [VH96], 3D landscapes [Lat88, Woo02, HRO11], 2D
topographic maps with contour lines [GWP07, DMGB10],
or with color coding [Boj09, DPMO12]. To emphasize at-
tended regions, alternative visualization techniques use filter
approaches to reduce sharpness and color saturation [DJB10]
in the unattended regions.

For dynamic stimuli, like videos, not only the spatial,
but also the temporal component of the data is generally
visualized by applying dynamically changing attention maps,
for example, to identify attentional synchrony of multiple
participants [MSHH11]. Attention maps for dynamic stimuli
bear the problem that an aggregation of the data cannot be
represented statically due to the changing stimulus. This
problem is overcome by motion-compensated attention maps
using optical flow information between consecutive frames
to adjust fixation data based on the moving object that was
attended [KW13]. This leads to an attention map where the
highest values are on the moving object (cf. Figure 6).

When looking at 3D stimuli, the third dimension has to
be included into the attention map. Usually, this is done by
representing the attention map on the 3D model itself [Pfe12,
PSF∗13a, PSF∗13b] as shown in Figure 7 on the right. An-
other possibility is to use a 2D representation of the 3D
stimulus and show the attention map on this 2D projec-
tions [SND10a] (cf. Figure 7 on the left). However, this leads
to data loss due to the reduction of one dimension. A third
possibility when multiple objects are shown in a 3D scene is
to color code the complete object in the attention map color
shown in Figure 7 in the middle [SND10a]. The creation of
attention maps for 3D stimuli is often associated with the
utilization of additional information about object positions in
the stimulus or feature detection.
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a) Traditional Attention Map

b) Motion-Compensated Attention Map

Figure 6: A conventional attention map for a video scene is
displayed in (a), where most of the attention seems to be on
two people in the background. The motion-compensated at-
tention map in (b) shows that most attention actually was on
the moving car. The motion-compensated attention map uses
optical flow information to adjust fixations before the atten-
tion map is calculated. Figure reprinted with kind permission
from Kurzhals and Weiskopf [KW13] and IEEE.

a) Projected b) Object-based c) Surface-based

Figure 7: Attention maps for 3D stimuli: (a) the projected at-
tention map, (b) object-based attention map, and (c) surface-
based attention map. Figure reprinted with kind permission
from Stellmach et al. [SND10b] and ACM.

4.3. Scanpath Visualizations

Spatio-temporal visualization with scanpaths connect consec-
utive fixations through saccade lines on the stimulus. Noton
and Stark [NS71a, NS71b] used the word “scanpath” to de-
scribe a fixation path of one subject when viewing a specific
pattern. Today, the word “scanpath” describes any sequence
of saccades and fixations on a stimulus [HNA∗11]. In a

typical scanpath visualization, each fixation is indicated by a
circle, where the radius corresponds to the fixation duration,
see Figure 8. Saccades between fixations are represented by
connecting lines [SPK86]. Additional information such as
the speed of fixations can be represented by changing the
color of the fixation circles [Lan00]. A simple scanpath only
shows recorded saccades without printing circles for the
fixations [Yar67]. Another interesting eye tracking metric is
the convex hull of a scanpath [GK99].

Figure 8: In a typical scanpath visualization, each fixation
is indicated by a circle, where the radius corresponds to the
fixation duration. Saccades between fixations are represented
by connecting lines between these circles.

Many different approaches exist to show position of fix-
ations and their temporal information in a scanpath layout.
However, only scanpath visualizations like the one shown in
Figure 8 are broadly used today. It is clear that this kind of
visualization quickly produces visual clutter, if several scan-
paths are shown in one visualization to study eye movement
behavior. On the one hand, if scanpath shapes are different,
lines and circles are plotted all across the visualization and
it is difficult to find patterns. On the other hand, if scanpath
shapes are similar, all saccade lines and fixation circles lie
one over the other. Again, it is very difficult to compare these
scanpaths with each other.

Many approaches have been presented to overcome the
problem of visual clutter. One approach averages or bun-
dles scanpaths [HFG06, HEF∗13, CAS13]. A crucial ques-
tion is to find an adequate averaging or bundling criterion.
This question of scanpath similarity has not been fully
answered. Another solution is to reduce the ink used in
scanpath visualizations and to show a condensed version
of a scanpath [GH10c] (cf. Figure 9). The advantage of
this visualization technique is that less visual clutter is
produced since circles for representing fixations are missing.
However, the drawback of this graphical representation is
that it is still difficult to visually identify common scanpath
patterns by comparing line directions. Another solution is
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to break down the spatial information of fixations into their
two dimensions [CPS06]. For example, the vertical and
horizontal components of saccades are then shown separately
on four sides of an attention map visualization [BSRW14]
(cf. Figure 11). The advantage of this visualization technique
is that the horizontal and vertical characteristics can be
studied independently from each other. However, it demands
more mental effort to combine the two separately presented
views into one mental image of the scanpath. Still, another
possibility is to shown only a part of the scanpath at a time,
for example, the proceeding five seconds of a selected
timestamp, or time frame [WFE∗12].

a) Standard

b) Light to Dark

c) Multicolor

d) Thin to Thick

Figure 9: Different types of scaled traces where the scan-
path representation is shown without fixation durations. In
(a) the normal scaled trace is shown, the line type in (b) is
changed from light to dark, in (c) multicolors are used for
each saccade. In (d) the line thickness changes from thin to
thick. Figure reprinted with kind permission from Goldberg
and Helfman [GH10c].

Another challenge of scanpath visualization is how to
show 3D fixation information. Basically, there are two
approaches. The first one, shown in Figure 10, is to visualize
scanpaths over the original stimulus [DMC∗02, SND10b,
Pfe12, PSF∗13a]. The other one is to warp the stimulus into
a 2D representation and to draw scanpath lines on this 2D
image [RTSB04]. Besides the question how to adequately
show 3D data on a 2D computer screen, which might lead to
data loss, visualization of scanpaths from 3D data have same
the limitations as their 2D counterparts.

4.4. Space-Time Cube

As an alternative spatio-temporal visualization approach,
space-time cube (STC) visualizations are commonly used in
various research fields [Häg82, Kra03]. For the application to
eye tracking data, the 2D spatial domain of the stimulus is
extended by a third, temporal dimension. This representation

Figure 10: The scanpath in 3D environments is represented
with spheres as shown in the left figure. The cones used in
the right figure are a different technique to show the scan-
path of a participant. This technique allows to encode addi-
tional information into the scanpath besides fixation dura-
tion. Figure reprinted with kind permission from Stellmach et
al. [SND10b] and ACM.

provides an overview of the complete data set and can be ap-
plied to static [LÇK10] and dynamic stimuli [DM98, KW13].
With the STC, scanpaths, fixations, and cluster information
are visualized statically and allow a direct identification of
interesting timespans that would require a sequential search
in the data otherwise.

Figure 12 shows an STC for the visualization of fixations
and gaze clusters of multiple participants, recorded from a
dynamic stimulus. A sliding video plane along the temporal
dimension is applied to relate timespans with the dynamic
content of the stimulus. Since this 3D visualization bears
issues resulting from occlusion, distortion, and inaccurate
depth perception, 2D projections of the data can be applied
to walls on the sides of the STC.

The main advantage of the STC in comparison to alterna-
tive visualization techniques, is the direct overview of data
from multiple participants that allows an efficient identifica-
tion of important AOIs. To this point, an application of the
STC to data from multiple participants was applied to syn-
chronizable stimuli only. The application of this visualiza-
tion technique to asynchronous data (i.e., head-mounted eye
tracking data) has not been investigated so far, since it bears
additional issues with the spatio-temporal coherence between
participants and an AOI-based analysis of this kind of data
provides more effective approaches.

5. AOI-Based Visualization Techniques

Other than the point-based visualization techniques, AOI-
based visualization techniques use additional information
of the recorded fixation data that annotates regions or ob-
jects on the stimulus that are of special interest to the user.
The annotation of AOIs in a static stimulus is often solved
by defining bounding shapes around an area or an object.
Automatic fixation clustering algorithms are also a common
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Figure 11: Saccade plots represents the horizontal and vertical position of a saccade on the four sides of a stimulus. The position
is represented by a dot and the color coding is used to distinguish between the different saccades. The distance of the dot from
the stimulus represents the length of the saccade. If a dot is placed on the left or right side, or top or bottom depends on the
position of the saccade in the stimulus. For example, if the saccade is in the top part of the stimulus it is shown on top of the
stimulus. Figure based on [BSRW14].

approach to identify AOIs on a stimulus [PS00, SD04].
With AOI information, various metrics can be applied to
the data [PB06, JK03], depending on the user’s research
questions. A simple in-context approach is an overlay of
AOI boundaries on the stimulus with values of the used
metric in each AOI (e.g., dwell time in an AOI [RVM12]).
The visualization techniques in this section visualize mainly
temporal aspects of the data, or relations between AOIs.

5.1. Timeline AOI Visualizations

Similar to point-based data, timelines can also be applied to
show temporal aspects of AOI-based data. As in the case of
point-based timeline visualizations, time is again represented
as one axis of a coordinate system. The other axis can repre-
sent AOIs or participants.

In the case of AOIs represented on the second axis either
one user, averaged information of multiple users, or multiple
users separately can be shown. In general, all of these tech-
niques represent the AOIs on separate timelines horizontally
or vertically next to each other. A visualization technique
representing only one user at a time is shown in Figure 13.

Here, either fixations can be represented [RAM∗05] or
the timespan of an AOI visit can be shown with a rectan-
gle [CN00, Hol01]. The first one is similar to a scanpath as
each fixation is represented individually. Therefore, showing
multiple participants on top of each other would lead to
visual clutter. However, for investigating individual partici-
pants, as for example in reading tasks [ŠR08, BR05] where
each word represents one AOI, this technique can be helpful
as it allows to see backtracks (i.e. backward movements
to re-read words). Furthermore, attention maps allow to
display fixation frequencies on visual regions of interest
over time [Coc09]. There is a condensed version of this
visualization technique [KDX∗12]. This technique uses only
one horizontal axis for time. Each fixation is displayed as a
circle on the horizontal axis. The radius of the AOI circle
corresponds to the fixation duration and the color of each
fixation corresponds to the AOI. This visualization indicates
how long and how often an AOI was visited and how many
fixations belong to an AOI.

Representing averaged eye tracking data allows to show
data of multiple participants in the same visualization with-
out causing visual clutter. This can be represented by a time-
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Figure 12: Space-time cube visualization for video eye tracking data. A temporal dimension (green) extends the spatial dimension
of the video to a static overview of the data. Gaze clusters are generated automatically from the gaze data of all participants.
The gaze points are projected onto the sidewalls of the space-time cube. A frame-by-frame navigation is realized to be able to
investigate interesting frames. Figure based on [KW13].

Figure 13: The time plot (on the right) uses a horizontal
timeline for each AOI, which are highlighted as rectangles
on the stimulus (on the left). Each fixation is drawn as a
circle at its point in time and depending on the AOI. The
circle radius indicates the fixation duration. Each fixation is
connected by a line showing the path. Figure reprinted with
kind permission from Räihä et al. [RAM∗05].

line for each AOI where the AOI visit is indicated by a rect-
angle [KHW14] or by using AOI rivers [BKW13] shown in
Figure 15. Here, the time spent in each AOI and the distribu-
tion amongst participants can be seen.

When each participant is represented individually, a
timeline for each is shown. Here, a representation with
rectangles [HNA∗11, WFE∗12] or as a scanpath can be
used [ITS00, RCE12]. The second visualization, shown
in Figure 14, allows a visual scanpath comparison when
applying statistical measures [RHB∗14].

When participants are used for the second dimension,
AOI hits are represented as rectangles on the timeline. This

t

AOI 1 AOI 2 AOI 3 AOI 4

Figure 14: Parallel scanpath visualization maps time onto
the y-axis and the AOIs of a stimulus onto the x-axis. For
each participant the fixations within an AOI are displayed
according to time, and the saccades are represented by lines.
Figure based on [RCE12].

visualization technique is called a scarf plot [RD05]. It can be
extended by displaying each fixation with the corresponding
duration separately, the color of the fixation indicating the
AOI it belongs to [RHOL13]. Participant groups instead of
individual participants can be visualized by displaying AOIs
with a thumbnail image on the x-axis [TTS10]. This can
both be used for static and dynamic stimuli. Condensing
the scarf plot even more can be achieved by placing a scarf
line for all participants belonging to one group next to
each other. A scarf plot technique can also be combined

c© The Eurographics Association 2014.



T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf & T. Ertl / State-of-the-Art of Visualization for Eye Tracking Data

Figure 15: Based on ThemeRiver by Havre et al. [HHWN02], the AOI Rivers display the change of fixation frequencies for each
AOI and transitions between AOIs. Time is represented on the x-axis, and each AOI is color-coded individually. Figure based
on [BKW13].

Figure 16: AOIs are placed in a circular layout in the middle
of the search path. The size of the AOI circle corresponds
to the number of visits to that AOI. The smaller circles in-
side an AOI represent the transition probability for this AOI
from each other AOI. Each fixation is then placed next to its
corresponding AOI, which leads to a circular looking search
path. Figure reprinted with kind permission from Lorigo et
al. [LHB∗08].

with an AOI timeline [KHW14] (cf. Figure 17). For 3D
stimuli, the scarf plot can be extended to a the model of
interest timeline. It represents objects in a 3D scene instead
of AOIs [SND10b]. Each object is assigned a color, and
objects belonging to a semantic group can be distinguished
by assigning the same color. The times when an object
was focused on is displayed on the x-axis with a colored
rectangle (cf. Figure 18). The scarf plot can be used to find
similar search patterns of participants by calculating the
scanpath similarity. Furthermore, it allows to see which AOIs
have been looked at the most or the least. However, the

transition information between AOIs is lost with these types
of visualizations.

A different approach, where the time axis is represented
in a circular layout allows to represent AOIs in the middle of
the circle (cf. Figure 16). The AOIs can include additional in-
formation, as for example, the transition probability [PLG06].
The temporal information of which AOI has been visited at
what point in time is represented in this technique. However,
it does not scale well if many AOIs are represented at the
same time.

5.2. Relational AOI Visualizations

Relational visualization techniques use AOIs and show
the relationship between them, for example, how often
attention changed between two AOIs. Different metrics are
represented in the AOI context, for example, the transition
percentage or transition probability between two AOIs. A
common visualization technique to evaluate transitions
between AOIs is the transition matrix [GK99]. A transition
matrix orders AOIs horizontally in rows and vertically in
columns and each cell contains the number of transitions
between two AOIs (cf. Table 2). This matrix representation
can be used to evaluate the search behavior of participants.
In this case, the stimulus is equally divided up into a grid of
AOIs. For example, a densely filled matrix indicates poor
search behavior since all AOIs have been focused on for
several times. Finding visual search patterns is improved
when cells in the transition matrix are colored to show the
transition count [LPS∗12].

Furthermore, transition matrices can be used to compare
multiple participants. The classical transition matrix only
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Figure 17: The upper part shows AOI timelines with attention histograms. The lower part shows scarf plots of ten participants.
For each participant a timeline is shown with colored timespans that correspond to the colors of visited AOIs. Black spaces
indicate that no AOI was looked at. Figure based on [KHW14].

Figure 18: Models of a 3D stimulus are mapped to a timeline depending on the time when and how long they were fixated. Figure
reprinted with kind permission from Stellmach et al. [SND10b] and ACM.

represents one participant. If all participants are represented
in the same matrix a visual comparison of search strategies
is possible. This is achieved by concatenating the matrices
of all participants and assigning a value to each matching
sequence between them as shown in Figure 19 [GH10b]. A
similar visualization technique using matrices is to place
AOIs horizontally as rows and, for example, the task or query
of a study vertically as columns. Each cell can then contain
different metrics such as fixation duration, or fixation count
[ETK∗08,SLHR09]. A matrix representation mixes statistical
measures with a visual representation. This representation has
the advantage of comparing 2D data sets visually. However,
if the number of AOIs is high, the matrix becomes large.

The following visualization techniques are not focused
on representing statistical information as the transition
matrix. Rather, the relation between AOIs is analyzed by
using well established visualization techniques such as a
directed graph or tree visualization. A directed graph can
be used to show transitions between AOIs (cf. Figures 20
and 21). Each node of the graph depicts one AOI and the
links depict the transitions. Node size can be varied or
color coding can be used to represent different metrics
such as fixation count or fixation duration. The thickness
of a link can depict the number of transitions between two
AOIs as shown in the example in Figure 20. Usually, this

Table 2: A classical transition matrix orders AOIs of one
participant horizontally in rows and vertically in columns.
Each cell represents the number of transitions between two
AOIs. The diagonal is empty as no transitions within AOIs
can exist [GK99].

AOI 1 AOI 2 AOI 3 AOI 4
AOI 1 - 1 0 3
AOI 2 2 - 4 1
AOI 3 0 7 - 3
AOI 4 1 0 2 -

type of diagram represents only data of one participant.
Averaged values of multiple participants can also be used.
Most visualization techniques show the graph independently
of the stimulus [IHN98, FJM05, TAK∗05, SSF∗11, BRE13].
Losing the topological order makes the graph harder to
interpret. However, the transition information allows one to
see in which order AOIs have been looked at or how often
the participant returned to look at an AOI. One example of
such a visualization technique is shown in Figure 21. Like
the transition matrix, the graph representation does not scale
well to a vast amount of AOIs.
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Figure 19: The AOI sequences of multiple users are con-
catenated and shown in one matrix horizontally and verti-
cally. Each matching sequence is marked by a red line. Green
lines show where the AOI sequence of one participant ends.
Figure reprinted with kind permission from Goldberg and
Helfman [GH10a] and ACM.

A tree visualization can be used to compare AOI se-
quences of participants. A node in the tree represents an AOI.
Each branch in the tree represents a different AOI sequence
as shown in Figure 22. Thus, many branches represent many
different search patterns [WHRK06, TTS10, RHOL13].
This visual comparison of scan patterns allows one to find
participant groups. However, it can only be used for short se-
quences, because for long sequences the difference between
participants will be to large and each participant would be a
single participant group.

6. Discussion of Future Research Directions

Numerous visualization techniques have been developed
to visualize different aspects of eye tracking data. Table 1
shows an overview of existing approaches: visualizations for
point-based data, AOI-based data, and visualizations for both
data types. From this overview, we can recognize that some
aspects of eye tracking analysis have been investigated to a
lesser degree than others.

The column for the category “interactive visualization”
shows that there are not many visualizations for interactive
analysis of eye tracking data. Most visualizations follow the
paradigm of static visualization and provide little support for
interaction. For this reason, we motivate to allow more user
interaction with visualization techniques for eye tracking data.

Figure 20: The top figure represents AOIs as circles which
are placed on the stimulus. The radius of the circle presents
the proportional dwell time. Transitions are depicted by ar-
rows where the thickness presents the number of transitions
between two AOIs. Figure reprinted with kind permission
from Holmqvist et al. [HHBL03] and Elsevier. The bottom
figure depicts AOIs in a triangular layout with the most impor-
tant AOI in the middle. Transitions are represented by arrows
with the thickness corresponding number of transitions. Fig-
ure reprinted with kind permission from Tory et al. [TAK∗05]
and IEEE.

Interaction allows the user to investigate the data by using
filtering techniques or selecting participants.

Table 1 also shows that the number of spatio-temporal
visualization techniques for AOI-based analysis is small.
Usually, if time is visualized for AOI-based methods, a time-
line is used along with one other data dimension. Therefore,
animation is not needed. This might also explain the lack of
in-context visualization techniques for AOI-based analysis.
In case of point-based eye tracking visualizations, fixation
data is often overlaid on the stimulus or presented as a 3D
visualization in case of dynamic stimuli. For in-context AOI-
based visualization, the presentation of the eye tracking data
is more abstract. This abstraction is intended to help analysts
concentrate on specific semantic questions. However, the
mental map of the eye tracking data on the stimulus is lost.
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Figure 21: The circular heat map transition diagram places
AOIs on a circle, where the AOI circle segment is color-coded
based on the fixation count inside the AOI. The size of the
circle segment indicates the total dwell time within an AOI.
Transitions between AOIs are represented by arrows, with the
thickness displaying the number of transitions. Figure based
on [BRE13].

Figure 22: A word tree represents the sequences of AOIs
starting at a selected AOI. The font size corresponds to the
number of sequences. The sequence AOI 0, AOI 10 and AOI
11, shows the most common sequence amongst participants.

In general, for AOI-based methods, the biggest limitation is
the number of AOIs that can be represented at once. Most
of the techniques do not scale well, if there are many AOIs.
Here, new visualization techniques have to be developed.

We found that the number of visualization techniques for
the category “dynamic stimuli” increased within the last five
years. The literature research also showed that the question of
how the visual analysis of multiple viewers with an individual
stimulus is still an interesting research topic. Application
areas for dynamic stimuli are, for example, video data or
data coming from a head-mounted eye tracker. Only a few
approaches deal with the question of how 3D eye tracking
data can be visualized. This question is important in case of
user experiments that record stereoscopic fixation data.

Also, separate handling of smooth pursuit from dynamic
stimuli has mostly been neglected. Including smooth pursuit
information in scanpath representations, for example, could
provide valuable information about attentional synchrony
behavior of multiple viewers.

Furthermore, we think that multimodal data visualization
techniques will become more important due to the interdis-
ciplinary character of eye tracking research. For example,
eye tracking data could be combined with other sensor
information coming from EEG devices, or skin-resistance
measurements. One approach is already included in the com-
mercial software BeGaze from SMI [SMI14]. However, there
are many open questions for new visualizations techniques in
this direction.

Another challenge in eye tracking are stimuli with active
content, where the user can influence the stimulus during the
study. For example, in studies of the usability of Web pages,
users may click on links and navigate to different sites. Here,
the question is how participants can be compared. Often,
a representative stimulus is created and the fixation of the
participants are manually mapped to the stimulus. However,
this might lead to erroneous data due to ambiguity or inac-
curacies introduced by the annotator. A tool called Gaze
Tracker [Lan00] records the complete Web page information
and scroll behavior automatically. Yet, this approach can
only be used for Web pages or graphical user interfaces. We
believe that further visualization techniques for this type of
stimulus will be developed in the future.

Our literature review showed that there is a large number
of visualization techniques for the analysis of eye tracking
data. However, it is not always apparent which visualiza-
tion technique works best for which type of analysis. This
question cannot be answered completely and to a full extent.
Choosing an appropriate visualization technique depends on
different factors. Therefore, we have classified the presented
techniques based on our taxonomy. Yet, we have let out the
analysis task. For example, a common analysis task is to
compare scanpaths of participants. Comparing scanpaths
of multiple users can help find regularities or similar pat-
terns between different participants. Many of the presented
visualization techniques can be used for scanpath compari-
son [Coc09, GH10b, TTS10, WHRK06, RHOL13, RBB14].
This is just one example of how the analysis task influences
the type of visualization technique for an evaluation.

Finding patterns in the eye tracking data is a general goal
of eye tracking analysis. However, often not one visualiza-
tion technique alone is sufficient to find those patterns and
analyze the eye tracking data. Rather, multiple visualization
techniques have to be used in combination. An interaction
of the user with the visualization techniques can further
improve analysis results. In the end, statistical tests have to
be used to show that results are significant. Therefore, we
propose to combine those approaches: using visualizations,
statistics, and interaction together. This is to some extend
done by visual analytics and could therefore, also be applied
to eye tracking analysis.
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7. Conclusion

In this state-of-the-art report, we have reviewed existing pa-
pers describing eye tracking visualizations. To classify the
different approaches we have created a taxonomy that divides
the papers into point-based and AOI-based visualization tech-
niques as well as into visualizations that use both types of
data. Furthermore, we have classified the papers on the sec-
ond level according to the data represented: temporal, spa-
tial, or spatio-temporal. An overview of all visualization tech-
niques was given as well as a detailed description of the dif-
ferent visualization techniques. Based on the results, we have
presented future directions for research.
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