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Fig. 1. Space-time cube visualization of eye-tracking data for a video stimulus, enriched by spatiotemporal clustering of eye fixations.

Abstract—We introduce a visual analytics method to analyze eye movement data recorded for dynamic stimuli such as video or
animated graphics. The focus lies on the analysis of data of several viewers to identify trends in the general viewing behavior,
including time sequences of attentional synchrony and objects with strong attentional focus. By using a space-time cube visualization
in combination with clustering, the dynamic stimuli and associated eye gazes can be analyzed in a static 3D representation. Shot-
based, spatiotemporal clustering of the data generates potential areas of interest that can be filtered interactively. We also facilitate
data drill-down: the gaze points are shown with density-based color mapping and individual scan paths as lines in the space-time
cube. The analytical process is supported by multiple coordinated views that allow the user to focus on different aspects of spatial and
temporal information in eye gaze data. Common eye-tracking visualization techniques are extended to incorporate the spatiotemporal
characteristics of the data. For example, heat maps are extended to motion-compensated heat maps and trajectories of scan paths
are included in the space-time visualization. Our visual analytics approach is assessed in a qualitative users study with expert users,
which showed the usefulness of the approach and uncovered that the experts applied different analysis strategies supported by the
system.

Index Terms—Eye-tracking, space-time cube, dynamic areas of interest, spatiotemporal clustering, motion-compensated heat map
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1 INTRODUCTION

The use of eye-tracking in various fields of research is a commonly
accepted method to gain insight into how people look at certain stim-
uli. In psychology, the analysis of recorded eye-gaze data can lead
to a deeper understanding of human cognitive processes [16]. For the
analysis of visualization designs, eye-tracking can be used, for exam-
ple, to gain insight into the viewers’ exploration strategies of tree di-
agrams [10], or for the analysis of e-learning technologies [31]. The
main focus in eye-tracking research in the past lies on the analysis of
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static stimuli such as images. Therefore, numerous methods exist to
visualize fixations and scan paths of data recorded for static stimuli.
For the analysis of dynamic stimuli such as video sequences, however,
the number of available visualization methods is very limited and of-
ten, those techniques are not very effective. Animated heat maps, bee
swarms, or just the recorded gaze paths are provided in the software
packages of vendors such as Tobii [3] and SMI [2]. With the defini-
tion of dynamic Areas Of Interest (AOIs), common metrics such as
fixations counts can be applied to time-dependent stimuli. For further
details, see the survey of common metrics for eye-tracking data by
Poole and Ball [30].

In general, the analysis of eye-tracking records from time-
dependent data can either be achieved by watching the video with
the afore mentioned visualization methods, or by statistical analysis
of AOIs and gaze data. Watching the whole video to find interest-
ing sequences can be time-consuming and exhausting for the analyst.
Statistical analysis of AOIs requires either a reliable detection algo-
rithm to find them, or tedious manual editing. Although future im-
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provements in the field of computer vision could provide techniques
to successfully identify all objects and regions of possible interest, hu-
man observation is still needed for semantic interpretation. For the
analyst, it would be more efficient to look at a representation of the
whole video at once and find interesting frame sequences without a
sequential search through each frame.

An interesting sequence could be a shot from a movie that draws
the attention of many viewers to one certain region at once—a phe-
nomenon called attentional synchrony [39]. Automatic analysis could
summarize these scenes, but it would lack semantic interpretation of
the scene context. Our design provides the possibility to find such re-
gions by interactive filtering and additionally shows motion patterns
of traced objects. The Space-Time Cube (STC) helps identify and in-
terpret these patterns in the spatiotemporal domain. Gaze direction
changes to other positions after cuts in video scenes can also be inter-
preted easily with the provided visualization. Additionally, spatiotem-
poral clustering of data points identifies AOIs that can be filtered by
the cluster size. This method helps find multiple AOIs in a time se-
quence and shows which objects received more attention.

We provide a method to analyze eye-tracking data recorded from
static or dynamic stimuli within a space-time visualization with the
focus on the analysis of multiple viewer recordings of videos. Our de-
sign combines an automatic algorithm to cluster gaze data of numerous
viewers and a visualization that summarizes the whole data set. By in-
teractive cluster and density filtering, users can identify time spans of
high attentional synchrony as well as multiple regions of interest. The
STC visualizes the spatiotemporal data in a static 3D representation.
By interactive translation and rotation of the data set, data points and
clusters can be interpreted in their original domain. To overcome prob-
lems of occlusion and depth perception, the design provides additional
wall projections that can be adjusted individually.

Our interactive visualization approach is combined with computer-
based analysis techniques from computer vision and data-mining. In
particular, it includes low-level computer vision techniques like opti-
cal flow estimation, high-level analysis of shot detection, as well as
spatiotemporal clustering.

Our key contribution is the unified spatiotemporal analysis of eye-
gaze data in the spatiotemporal context of the dynamic stimulus. In
this sense, our visual analytics approach is different from generic spa-
tiotemporal analysis that does not incorporate the driving visual stim-
ulus. Besides this fundamental contribution, we provide a couple of
technical contributions as components of our visual analytics system:
a motion-compensated version of eye-gaze heat maps, a variant of
STC (see Figure 1) with improved visualization of spatial and tem-
poral context, and spatiotemporal clustering that includes information
from shot detection for better results.

2 RELATED WORK

For the analysis of video material, the use of eye-tracking can provide
valuable information to understand the viewing behavior of users. Tien
and Zheng [41] measured gaze overlaps of a video that showed a surgi-
cal task to compare experts’ gaze with the gaze of trainees. Goldstein
et al. [19] examined similarities in the viewing behavior of several
users to identify centers of interest in movie scenes. Marchant et al.
[27] described an approach to investigate the influence of directorial
techniques on film viewers’ experience. Smith and Henderson [39]
compared the degree of attentional synchrony between static and dy-
namic scenes. We provide visualization techniques that can be used to
support the quantiative means of analysis from those papers, such as
time-spans of high attentional synchrony.

Numerous methods exist to visualize eye-tracking data. Holmqvist
et al. [21] provide a comprehensive guide to methods and measures.
Generally, heat maps [7, 15, 47] are used to display aggregated eye-
tracking data. Tsang et al. [43] provide a tree-like visualization for the
exploration and comparison of sequential gaze orderings. Raschke et
al. [32] introduced the parallel scan-path visualization to facilitate the
comparison of eye-tracking data between several users. In the context
of visual analytics, Andrienko et al. [5] provide a detailed methodol-
ogy for eye-movement data. We adopt many of the standard visualiza-

tions; see Section 4 for more details on the components integrated in
our design.

The STC is used in various fields of research. Gatalsky et al. [18]
describe its application to event data in a geographical context. Chen et
al. [12] and Botchen et al. [8] represent video content in 3D to depict
individual objects and motion events. However, they do not include
eye-tracking data in their representations. We adopt the 3D space-time
video representation as context, but add the visualization of the eye-
gaze data. In the context of eye-tracking, Li et al. [26] describe the use
of the STC to visualize eye-trajectories. They focus on the analysis
of static stimuli. For the application to dynamic stimuli, Duchowski
and McCormick [14] describe a space-time representation of Volumes
Of Interest for aggregated eye movement trajectories. We extend the
concept for dynamic stimuli and provide different data representations
in addition to the mentioned eye-trajectories.

Clustering of eye-tracking data is already used when fixations are
identified in raw data. Salvucci and Goldberg [34] describe a taxon-
omy for different fixation identification algorithms. For the clustering
of multiple user gaze data, Sawahata et al. [36] and Mital et al. [28]
use a Gaussian Mixture Model. We use the mean-shift clustering ap-
proach for gaze data, according to Santella and DeCarlo [35] because
it is robust to noise and does not require a preset number of clusters.
However, we are not aware of any previous cluster method that would
respect shot boundaries from shot detection algorithms.

3 DESIGN OVERVIEW

Our design uses multiple coordinated views [33] to show the differ-
ent aspects of spatiotemporal eye-tracking and stimulus data, as they
are particularly helpful for analyzing this kind of data [4]. We pro-
vide a visual interface for analytics with adjustable and detachable
components. Figure 2 shows a screenshot of the system. The main
components are:

(a) Viewer controls: This control panel allows the individual adjust-
ment of the visualization view, depending on the analytical task.
The data point representation (Section 5.2) and the cluster repre-
sentation (Section 5.4) can be enabled separately or together. The
video preview, the projection walls, and the overview walls can be
enabled and adjusted in size. Each projection wall can be set to
show projections of data points or cluster.

(b) Visualization view: The visualization view consists of two com-
ponents. The main component is the interactively explorable STC.
It visualizes the eye-tracking and video data in their original spa-
tiotemporal domain. The second component is the video preview
that shows data points and AOIs as known from standard analysis
tools.

(c) Video controls: To navigate through the STC, this panel provides
a time slider, frame-wise navigation, and a play button. For analy-
sis tasks related to cuts in the video, shot boundary frames can be
jumped to directly, an approach that is also used in the work of Li
et al. [25].

(d) Parameter controls: Interactive filtering and data drill-down can
be performed by parameter adjustment in this panel. The first
slider determines the scaling of the STC and the projection walls
along the time axis. By adjusting the kernel size, data points can
be filtered frame-wise by their distance to their center of mass.
For the cluster representation, depicted clusters can be filtered by
their size. A histogram shows the number of clusters in relation
to the cluster size. Cluster size relates to the total amount of data
points within a cluster, not to its spatial extent.

User list: Each recorded viewer is listed and selectable for indi-
vidual or multiple scan paths analysis. A qualitative scheme of
8 colors created by ColorBrewer 2.0 [20] is applied in a cyclic
fashion to distinguish between scan paths of different viewers.

(e
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The design was developed in a formative process. In several short
sessions with two visualization and eye-tracking experts, the analytical



Preview
[] Enabled Size {i}

(Create Heat Map|

Data Ponts.

7] Cluster

5 x
Wals

Botiom Wall Side Wl Overview P‘a.
etance ——{f Vlenabled ® DaaPonts © Cister  [lEnabled © Databonts O Cister [ Enabed S

Frame 21 Frame 107 Frame 218 Frame 392 Frame 1017

(revier ] [ ][]

Frame 1130

Frame 696 Fume794;"4 - TR
@

Frame 1420 Frame 1690

Frame 1812

&)

e

Fig. 2. Design components: (a) viewer controls; (b) space-time visualization view; (c) video controls with key-frames for single shots; (d) parameter

controls; (e) user list for scan path visualization.

methods, the visualization design, and the usability in general were
improved, according to their comments.

We combine standard eye-tracking visualizations (Section 4) with
extended analysis methods that we have developed for dynamic stimuli
(Section 5). According to the visual analytics mantra [24], we provide
an automatic analysis of the gaze data by clustering and interactive
filtering by cluster size. Data points can be filtered by their spatial
density. In addition, automatic computer vision techniques such as
optical flow estimation and shot detection allow us to oft-load analy-
sis work to the computer. The viewers’ gaze direction can be influ-
enced through abrupt cuts [11]. Therefore, it is necessary to define
shot boundaries for further analysis. We use a shot boundary detec-
tion algorithm in order to support shot-based clustering and analysis
related to shot boundaries.

4 STANDARD EYE-TRACKING VISUALIZATION

In our visual analysis approach, we included established visualization
methods for eye-tracking data. These methods allow for an easy adop-
tion of the design, since the analyst is already familiar with several of
its components. Also, the established methods are needed to cover a
wide collection of different analysis tasks (see Section 7.5).

Heat Maps

Heat maps in eye-tracking research are commonly used to provide a
qualitative impression of the users’ gaze distribution. For static im-
ages, the aggregation of gaze positions over the observation time is
expressive, resulting in a static heat map. For the generation of heat
maps, we integrated the algorithm and color mapping described by
Blignaut [6]. The principle of static heat maps can be applied to dy-
namic stimuli to summarize the distribution of attention, but video ma-
terial with numerous cuts and various camera angles, such as Holly-
wood movies, can produce heat maps that bear little to no meaning.
Ways to overcome this problem are either to create heat maps of very
short sequences or to use dynamic heat maps. We provide the possi-
bility to create a static heat map of a user-defined time-span as well

as a dynamic heat map visualization during the playback of the video.
Additionally, the user can generate a motion-compensated heat map,
a novel technique that uses optical flow information to bundle data
points at observed objects (Section 5.5).

Scan Paths

The individual history of each participant’s gaze can be visualized by
scan paths. 2D and 3D scan path visualizations can be found in differ-
ent variants, as mentioned in Section 2. We integrated the scan paths
of each viewer in our design. They can be enabled individually to
investigate the viewing behavior.

Areas of Interest

With AOIs, statistical analysis of the data is possible. Common eye-
movement metrics such as fixations per AOI or percentage of partic-
ipants fixating an AOI can be used to retrieve objective information
[30]. Generally, the analysts have to define regions that they want to
examine with an appropriate metric. Applying clustering algorithms
to recorded eye-tracking data of video material with unknown AOIs
provides valuable information about the regions that have been exam-
ined by the viewers and might be of interest for the analyst. Figure 3
shows an example where the attention of many viewers was concen-
trated on a driving car. The number inside the AOIs (see also Figure
2) provides information about the cluster size (see Section 5.4).

All of these methods are integrated in our design and can be enabled
individually.

5 EXTENDED ANALYSIS

This section describes modified, extended, or new methods that are in-
cluded to facilitate the analysis of eye-tracking data for dynamic stim-
uli.

5.1

Recording eye-movement data over time generates spatiotemporal
data that can be analyzed in various ways. Commercial analysis tools

Space-Time Cube Visualization



Fig. 3. Areas of Interest: Axis-aligned boxes represent regions of poten-
tial interest. Yellow dots (as marked by the white arrow) represent the
gaze points of the viewers.

provide visualization methods that are overlaid on top of the original
stimulus and can be watched as a video. Especially the investigation
of long video sequences becomes a time-consuming task with these
methods. As an alternative, the static representation of spatiotemporal
data within an STC reduces the effort to find time sequences of po-
tential interest. Patterns of synchronous eye movement, as well as the
existence and number of potential AOIs can easily be recognized. By
providing a freely rotatable 3D visualization, the analyst can explore
the data in its original domain.

A slice inside the STC represents the current video frame. Its po-
sition is freely rotatable and movable to investigate the data around it.
With the video controls, the analyst can navigate through the video by
using the time-slider, frame-wise navigation, shot boundary frames, or
the playback function. Changing the frame position translates the STC
relative to the video frame slice along the time axis, providing an easy
method to analyze selected time-spans in the video. In the context of
video analysis, the time axis typically shows the highest visual expan-
sion. Therefore, zooming and scaling of the time axis enables the user
to explore the data as an overview as well as in detail.

3D visualizations can be afflicted with perceptual issues resulting
from occlusion, distortion, and inaccurate depth perception. To ad-
dress these problems, we provide the user with the possibility to adjust
the camera individually in order to resolve possible occlusions in the
STC. We also adapted the idea of 2D wall projections (Figure 4) from
ExoVis, introduced by Tory and Swindells [42]. With an adjustable
scale and distance to the STC, the walls represent 2D overviews of the
data without being occluded by the main visualization. A slider moves
through the walls, to indicate the current position in the video. Each of
the two walls can be adjusted to show either the data points (Section
5.2) or cluster projections (Section 5.4). Two small walls provide an
overview of the whole video, independent from the current time-scale.

5.2 Data Point Representation

Eye-tracking data, provided as raw measurement data or as prefiltered
fixations, can be mapped to video frames, corresponding to the time-
stamp of the data. This provides a maximal set of data points per frame
equal to the number of recorded viewers. However, due to saccades or
measurement problems, a subset of the data points is usually not avail-
able. Bearing this fact in mind, the visualization is designed to ana-
lyze eye-tracking data of numerous viewers simultaneously, providing
enough data points for interpretation.

Presenting the data points in the STC already gives an impression
of the data distribution and especially of sequences with similar eye-
movement. Attentional synchrony can indicate events of high saliency.

By determining the distance d of each point to the center of mass

2
per frame, we can calculate a value v(d) = e 05(5)" e [0,1]. The
value v defines the transparency and the color of a data point. The
same color mapping as for the heat maps (Section 4) is used. By re-
ducing the kernel size o in the parameter controls, sparse data points
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chrony are clearly visible and motion signatures can be recognized. Ad-
ditionally, the wall projections provide 2D information of the data as well
as an overview of the current position in the video.

Data point representation: Moments of high attentional syn-

in the space-time visualization fade out, facilitating the identification
of dense regions.

Figure 4 shows an example scene. Data points with a red color
indicate a distance close to their frame’s center of mass. When many
viewers simultaneously looked at a small area, a large number of data
points appear red and remain even when the kernel size is reduced.
This representation can also reveal motion patterns of objects tracked
by several viewers. However, sequences with sparse data could also
be interesting to examine. To this end, the cluster representation can
be used (Section 5.4).

5.3 Shot Boundary Detection

Depending on the video material that has to be investigated, finding
shots is useful before clustering to find special patterns, related to cuts.
Manual annotation of shot boundaries would require the analyst to ex-
amine the complete video first, which would be very time-consuming.
Therefore, we decided to include a computer vision technique that uses
optical flow to find shot boundaries automatically. A shot is defined
by a contiguous recording of one or more video frames depicting a
continuous action in time and space [29]. Cuts between shots can ei-
ther be manually marked or, as often preferred, detected automatically
by an algorithm. Automatic shot boundary detection is an important
pre-processing step in video analysis [38]. From the numerous differ-
ent approaches that exist, we decided to use optical flow information
similar to the method described by Bruno and Pellerin [9] because it is
more reliable than the histogram-based approaches. In our implemen-
tation, a cut is detected by high disturbance in the optical flow. The
optical flow is calculated by the method of Farnebick [17], provided
by OpenCV [1].
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Fig. 5. Time controls: Key-frames allow direct navigation to shot bound-
aries.

A shot boundary is depicted by a red arrow on the time axis of
the STC. In the video controls (Figure 5), a key-frame represents the
boundary. By picking one of the key-frames, the space-time visualiza-
tion jumps to the corresponding position on the time axis, providing
an efficient method to examine shot changes. With the shot boundaries
defined, the data can now be clustered to extract new information.

5.4 Cluster Analysis

Using clustering algorithms to identify interesting regions in a data set
is common practice [23]. To find regions of potential interest in the



recorded gaze data, we choose a clustering algorithm that fulfills the
following requirements:

1. Unknown number of clusters: The number of data points that
have to be clustered can vary, depending on two factors: the num-
ber of participants for whom data was recorded; and the length of
the stimulus presentation. Defining a proper number of clusters
is not intuitive, even if these factors are known. Therefore, we
decided to use an algorithm that requires no predefined number
of clusters and uses more intuitive parameters.

2. Parameterization: A parameterizable clustering approach al-
lows the user to define the granularity of the clusters. Therefore,
the adjustable parameters have to be intuitively understandable.
The algorithm should depend on two controllable parameters that
determine the spatial and temporal extents of the clusters.

The mean shift algorithm performs without a preset number of clus-
ters and can be parametrized in space and time independently. There-
fore, it fits the requirements and is suitable for the clustering of the
data. Mean shift clustering is widely used for feature space analysis
in the field of computer vision [13]. Santella and DeCarlo [35] intro-
duced its application to eye-tracking data.

We adopt their algorithm and extend it to take into account the shot
boundaries. To this end, the spatiotemporal gaze points are separated
for each shot. After this separation, mean shift clustering is inde-
pendently executed for each shot to obtain cluster information. This
method helps identify special behavior on shot boundaries of a video.
As an example, it is known that a center bias exists that is related to
cuts [44]. This short time-span of orientation to the center, as well as
short periods of gaze reorientation after a cut, can only be investigated
by taking cuts into account. Clustering the video without shot bound-
ary information could falsely count these few data points after the cut
to the cluster of the previous shot. With the shot boundary information,
the few data points become a separate cluster that can be visualized to
indicate the described behavior much better.

The found clusters are visualized in two different ways:

e Cluster hull: We create axis-aligned boxes around all data
points of a cluster for every time-step because they represent the
most common convention for AOI representation. The boxes are
connected after applying an exponentially weighted moving av-
erage [22] to their size, in order to provide a smooth pursuit for
the AOI representation. They create a hull around the cluster data
points. The spatial extent provides information about changes in
the spatial density of the data points in the cluster over time:
“thick” cluster hulls correspond to a wide spread of points and,
thus, low density—and vice versa.

e AOI representation: By projecting the cluster hull of a time
step to the corresponding video frame, dynamic AOIs provide
information about the distribution of attention on different re-
gions or objects. The cluster size is measured by the number of
data points it contains.

5.5 Motion-Compensated Heat Maps

With motion-compensated heat maps, we introduce a new approach
to summarize eye-tracking data of dynamic stimuli. A motion-
compensated heat map shows high values for observed objects in mo-
tion. For example, imagine an object moving through the video from
the right to the left side. Assuming all viewers would always observe
the object, the resulting heat map of this time-span would show a uni-
form distribution along the movement trail of the object. In contrast,
the motion-compensated heat map would show high values only on
the object that was observed, indicating the high amount of attention
spent on this object.

The creation of a motion-compensated heat map can be described
by a particle tracing in time-dependent fields [46] as follows:

1. The optical flow between consecutive frames in the video is cal-
culated (here, the optical flow for shot detection can be reused,
see Section 5.3). It is described by a time-dependent vector field.

Fig. 6. A conventional heat map (left) and a motion-compensated heat
map (right) of a red circle that moves from right to left.

Fig. 7. Car driving from the tower to the left side of the screen: The
conventional heat map (left) provides only little useful information about
the dynamic AQOIs and could lead to misinterpretations because the hot
spot lies on two persons. The motion-compensated heat map (right)
conveys the information on which object (the car) most of the attention
was spent.

2. The analysts have to define a time-span they want to be summa-
rized.

3. A key-frame within this time-span has to be picked. It defines
the end for the particle tracing and serves as a representative for
the sequence.

4. Each gaze-point within the time-span is traced along the flow
until the key-frame position is reached.

5. The traced end positions are used to create a heat map that is
blended together with the representative key-frame.

Figure 6 shows a comparison between a conventional and a motion-
compensated heat map, created for the same frames of a video. In the
video, a red circle moved from right to left. The viewers were asked
to follow the circle during its movement. The measured data is dis-
tributed along the motion path and no high values remain on the circle
itself. The motion-compensated heat map transports the majority of
the data points along the optical flow, showing the hot spot with the
highest value on the circle itself. The motion path can still be rec-
ognized, providing summarizing information about the movement and
which object was attended to.

Figure 7 shows a real-world example: Both heat maps represent
a short sequence (7 sec) with a driving car and five persons in the
background. In this sequence, the car receives most of the attention.
Due to the dynamic changes in the scene, the conventional heat map is
hard to interpret and the existing hot spot seems to lie on two persons,
which would be a misinterpretation. The motion-compensated heat
map adjusts the data points along with the object movement, the hot
spot lies on the car.

6 USE CASES

Our visual analytics framework provides different methods to iden-
tify spatial and temporal regions of potential interest. Our approach is
generic and can be used with any image or video. Only the use for indi-
vidual videos such as recordings of interactive tools or head-mounted
eye-tracking devices is limited so far because the recorded data can-
not be synchronized easily between viewers, which is a prerequisite to
analyzing common eye-gaze behavior of groups of viewers.

6.1 Attentional Synchrony

With the data point representation, users can adjust the kernel size o
(Section 5.2) to filter the data interactively. Time-spans with sparse
data fade out as the kernel size is reduced and only dense points re-
main. With this method, the video can be searched for time-spans



with dense data point distribution, indicating that the viewers’ atten-
tion was drawn to the same region at the same time. This attentional
synchrony can be interesting for various reasons. For example, com-
mercials could be analyzed if the video draws attention to the intended
object, or if another object in the scene receives too much attention.
Figure 8 illustrates an example of high attentional synchrony. The
video shows a commercial that presents pictures of different consumer
products (see Section 7.1). The picture of a bottle of eau de toilette
leads every viewer to concentrate on the small area of the label, in or-
der to read it. In the data point representation, this short time-span is
clearly visible, even when the kernel size is small.

Fig. 8. Attentional synchrony: Dense regions in the data point represen-
tation indicate time-spans where all attention was concentrated on one
area.

6.2 Multiple AOls

Attentional synchrony leads to very few clusters during its occurrence.
In contrast, no synchrony results in numerous, smaller clusters. This
situation might happen, for example, when multiple objects appear
on the screen and every viewer investigates each object in a different
order. Detecting the objects as separate AOIs is therefore possible,
cluster size information and a heat map can then be used to examine,
which object is more interesting. Figure 9 shows an example situation.
The video is the same as in the previous example; in this part of the
video, however, three objects appeared at the same time on the screen.
The time-span with these three objects is clearly visible in the cluster
representation. Looking at the cluster size information and the cor-
responding heat map, we can assume that the camera and the coffee
machine received more attention than the cell phone.

6.3 Shot Boundary Examination

With the shot boundary frames, the analyst can jump directly to the
cuts in a video and examine if changes in the viewers’ gaze direction
are noticeable. Figure 10 shows an example from the second test video
that was used for the analysis task (Section 7.1). The excerpt shows a
small cluster of data points at the same position as the cluster before
the cut. This indicates that most of the viewers’ gazes remained at
the old position for 16 frames, and then the viewers began to reorient
their gaze in the new shot. This visualization can help identify such
latencies, but it could also be used to visualize the center bias after
cuts, reported by Tseng et al. [44].

7 QUALITATIVE USER STUDY

To evaluate our design, we performed separate testing sessions with 5
visualization experts; three of them have advanced knowledge of eye-
tracking analysis. Each session took about 45-60 minutes to complete,
including an introduction and an exploration phase. First, the different
views and the design of the system were explained for an example
scene and the participants explored it to make themselves familiar with

Fig. 9. Multiple AOIs: Three clusters in the same time-span indicate
that three different AOls exist. The corresponding heat map shows the
distribution of attention.

Fig. 10. Shot boundary examination: After the cut (red arrow), the view-
ers’ gazes remained at the old position (green cluster).

the design. Possible use cases as described in Section 6 were explained
to prepare the participants for the following task:

e Analysis Task: To obtain useful and instructive feedback, the
participants had to perform an analysis on a new, realistic data
set in which they should find the 10 most interesting time-spans,
based on their opinion. Attentional synchrony, distribution of
attention on multiple AOIs, and viewing behavior at shot bound-
aries were mentioned as examples that could be of interest. The
participants were free to switch between different representations
as needed. Each of their findings was listed consecutively by the
participants with a frame-span and a description of the discov-
ered event.

During the task, the think aloud method [45] was used to gain in-
sight into the analysis process of the participant. After the task, a
questionnaire was used to obtain additional information on the differ-
ent representations.

7.1 Test Data

The test videos were recorded from regular television program, pro-
viding a variety of different aspects to analyze. The recorded material
comprised 13 clips from commercials, TV shows, and movies. No
video clip was significantly longer than 90 seconds. Each video was
upscaled to 720 pixels in height, the width was adjusted respectively.
Upscaling was performed to show the videos on a Tobii T60 XL eye-
tracker with a 24” screen (resolution: 1920 x 1200) at a distance of 65
centimeters from the eyes. In separate 20-minutes sessions, 16 volun-
teers watched the videos consecutively. As viewing behavior can be



related to a given task [40], we instructed all viewers to watch each
video attentively and then summarize the main plot of each video.
With this task, we reduced inattentiveness and encouraged an explo-
rative viewing behavior.

As an introduction, we showed a credit card commercial where dif-
ferent consumer products appeared successively on the screen. Some
of them turned up alone, others together. We used this video to ex-
plain the functionality of the visualization and to show the use cases
(Section 6). Due to copyright issues, Figure 8 and Figure 9 contain
illustrative images of the actual video. For the analysis task, we chose
a promotional video for a new car (as seen in all figures except for
Figures 6, 8, and 9). This kind of video aims to draw much attention
to the product that is promoted. It can be assumed that the cuts and the
arrangement of shots were carefully planned by the director. Analyti-
cal findings could show to which extent the director’s intentions were
reflected in the viewing behavior of the viewers.

7.2 Questionnaire

The questionnaire consisted of 9 items, concerning the representation
of data points and clusters as well as the STC visualization in general.
Additional comments could be listed at the end of the questionnaire.
We used a 6-point Likert-scale from “I don’t agree” (scale = 1) to “I
agree” (scale = 6) with the option to give no answer. Each participant
rated all statements. Concerning the data point and cluster representa-
tion, the following statements had to be rated:

e Usability: The visualization was helpful to solve the task.

The data point representation (mean = 4.40, standard deviation
= 1.34) was rated worse than the cluster representation (mean =
5.40, sd = 0.55).

o Comprehensibility: The visualization was easy to interpret.

The data point representation (mean = 5.20, sd = 0.84) and the
cluster representation (mean = 5.0, sd = 0.71) were rated simi-
larly.

For the general use of the design, three statements were rated:

e STC navigation: The navigation with the STC was easy to un-
derstand (mean = 5.4, sd = 0.55).

o Key-frame navigation: The key-frames were helpful to navigate
through the video (mean = 4.4, sd = 1.52).

e Projection walls: The projection walls were helpful to under-
stand the spatial distribution of the data (mean = 5.6, sd = 0.8).

Comparing the representation of data points and clusters, the results
indicate that the cluster representation was considered more helpful
than the data point representation. All participants were able to inter-
pret both representations without any problems.

According to the comments and ratings, the general use of the STC
and the video navigation was easy to understand. Identification prob-
lems in the 3D visualization could be resolved by looking at the pro-
jection walls. Therefore, the projection walls were rated very good
by almost all participants. Lower ratings for the key-frame navigation
result from the fact that not every participant was interested in direct
shot boundary investigation and used the key-frames at all.

7.3 Exploration Strategies

During the task, the participants were asked to think aloud what they
wanted to find out and what they did to achieve this. This method
provides essential information about the general usability of the design
and insight into the individual strategies during the analytical process.
For the following description, we refer to individual participants as
P1-P5.

Given the same introduction, the participants started with a blank
STC and could decide on their own, how to begin the analysis. We
identify three different approaches for the first steps in the analytical
process:

e Sequential analysis: P3 and P4 investigated the static represen-
tation only for a short time. Afterward, they began to proceed
sequentially through the video. P3 started directly at the begin-
ning and used the slider to navigate through video shot by shot.
P3 claimed to be a regular user of video cutting software and that
sequential analysis was the usual approach. During the task, P3
mainly concentrated on the bottom wall projections of nearly all
clusters at once and the video preview. Only for further investiga-
tions, P3 reduced the number of clusters. P4 looked at the cluster
overview first, than used the time slider to fast-forward through
video. During the analysis, P4 tended to look mainly at the video
preview with cluster AOIs activated. To find time-spans with dis-
tributed attention, P4 used the cluster representation. Using this
strategy, P4 discovered and examined mainly the time-spans in
the video that showed landscapes. P4 mentioned that the data
point representation seemed very appealing, but during the task
P4 almost forgot to use it. Both participants were familiar with
eye-tracking, although their experience was mainly restricted to
the analysis of static stimuli.

o Large clusters first: P1 and P2 investigated the cluster represen-
tation first and used the filter function to remove small clusters.
Beginning with the largest cluster, they examined successively
time-spans that contained them. P1 used the data point represen-
tation only for a short time, and concentrated mainly on the clus-
ters. Although P1 had no further experience with the analysis of
eye-tracking data, P1 was able to proceed very fast by cluster ex-
amination. P2 used the 3D cluster representation in combination
with the projected data points on both walls. After investigat-
ing the 3 largest clusters, P2 began to search for time-spans with
multiple clusters. P2 had experience with eye-tracking analysis.

e Data point investigation: P5 began with the data point represen-
tation. By looking at the data points in the 3D visualization and
on the walls, PS5 discovered the motion trails, resulting from the
pursuit of the car while it was driving through the scene. After
P5 had investigated these time-spans, P5 switched to the cluster
representation in 3D but kept the data point projections on both
walls. P5 proceeded by investigating time-spans where the data
points were more widely distributed.

In general, each participant used the data point representation and
the cluster representation during the task, but the main focus was on
the clusters. This strategy reflects the results from the questionnaire,
because the cluster representation was rated more helpful to search for
interesting sequences. P3 and P5 reported that they used both repre-
sentations to identify cuts and camera pans. The time-scale was mainly
used for short time-spans; the participants preferred to see the STC
completely during the exploration.

7.4 Findings

The participants were asked to identify the 10 most interesting time-
spans. Independent from the individual exploration strategy, the most
common findings were:

e Introduction: The promotional video was presented within a
TV show. At the beginning, the host of the show can be seen for
a short time-span, then the promotional video fades in (Figure
11) . The participants discovered a high concentration of the
viewers’ gazes on the face of the host shortly before the shot
boundary. In the following shot, the gaze remained in this region
and examined the station-logo first.

e First appearance of the car: The first appearance of the car
is a very salient event (Figure 12). P1 described it as kind of a
salvation from disorientation. In the previous shot, the camera
pans to the right, leading to a gaze distribution on the edge of the
screen, indicating an exploration of the new objects that appear
in the scene. Then, the shot with the car fades in, concentrating
all attention on the car surrounded by a halo.



Fig. 11. Introduction: High attentional synchrony on the face and the
logo.

Fig. 12. First appearance of the car: The second largest cluster repre-
sents the AOI on the car when it appears for the first time.

e Tracing the car: The video contains 3 major shots that show the
car driving from one side of the screen to the other. These shots
result in a high concentration of the viewers’ gazes primarily on
the car. This yields a clearly recognizable motion signature in
the data point representation (Figure 13). Likewise, some of the
largest clusters indicate this motion.

Fig. 13. Tracing the car: The largest cluster describes the tracing of the
car. The data points on the walls clearly show the motion signature of
this event.

e Landscape exploration: Between the shots with the car,
Mediterranean landscapes are shown for short time-spans (Fig-
ure 14). To identify these scenes, data points and clusters were
examined. The clusters were also used to identify the most im-
portant AOIs within these scenes.

Fig. 14. Landscape exploration: Multiple AOls were investigated. The
lighthouse seemed to get more attention than the other objects in this
scene.

e Appearance of the spokesperson: Another salient event ap-
pears towards the end of the clip (Figure 15). During the video,
persons appear only in the background and faces are hard to rec-
ognize. Therefore, when the spokesperson finally appears, he
attracts much attention.

Fig. 15. Appearance of the spokesperson: When the person fades in,
nearly all attention is drawn to his face.

Visit http://go.visus.uni-stuttgart.de/stva to watch a supporting
video.

7.5 Review Session

To compare the new eye-tracking visualizations with state-of-the-art
methods and to identify task-related limitations, we hosted an addi-
tional group session with the three experts who had advanced knowl-
edge of eye-tracking analysis. The review session was held after a
time lapse (thirteen weeks after the testing session) and took about 45
minutes. The test data from the first session was presented to make the
participants familiar with the system again. They were asked to as-
sess the common existing eye-tracking visualizations for video anal-
ysis without predefined AOIs, as well as the new ones provided in
our system, in terms of their suitability for different tasks. A prede-
fined set of analysis tasks concerning the overview of the data [37],
the identification of AOIs, the evolution of attention over time, and
the extraction of general viewing strategies of multiple users [5] was
used for an initial assessment. The participants were encouraged to
state additional tasks along with an assessment of the different visu-
alizations for those tasks. For the assessment, we included common
existing visualizations techniques: bee swarm, dynamic heat map, and
gaze replay. Motion-compensated heat maps, the data points display,
and the cluster visualization represent the new methods for the assess-
ment. Table 1 shows the results of the assessment.



Table 1. Suitability of different eye-tracking visualizations for various analysis tasks. Tasks marked by (*) were added by the participants. Each
combination of visualization and task was rated either with ’-’" : not useful, '+ : useful or *++" : very useful.

Compared to the common visualization techniques, the new meth-
ods provide a data overview that is most useful with the data point
and cluster representations. For the estimation of the current distri-
bution of attention in a specific frame, all visualizations were rated
useful except for the data point representation. The participants men-
tioned that the intersection of points with the video plane in the STC
was not sufficient for this task. For the comparison of attention on ob-
jects over time, all visualization techniques except for the bee swarm
were considered to be suitable. The cluster representation was rated
very useful for identifying attentional synchrony as well as multiple
AOIs. Finding multiple user groups is a complicated task; here, the
new methods were considered not useful. However, the existing vi-
sualization techniques provide only little support for this task, too. In
this case, additional visualization techniques are required. For the two
tasks concerning the focusing on objects, the new visualization meth-
ods were considered useful; from the common existing methods, only
the gaze replay was considered useful for both tasks.

8 CONCLUSION

We have presented a new approach to analyzing eye-tracking data of
videos or other dynamic stimuli with a space-time visualization in
combination with computer vision algorithms. Our design provides
multiple views that allow the user to focus on different aspects of the
data. The data point representation or the cluster representation pro-
vides an overview of the whole video without the need to watch it
completely. Filtering clusters by size and data points by spatial den-
sity is an effective method to find time-spans of potential interest.

With the expert feedback during the development of our system, we
were able to improve the usability of the design. The following quali-
tative user study led to interesting insights that helped understand how
our design was used for analysis tasks. It showed that the participants
adopted different strategies for the analysis of the data. This could be
related to analytical processes they are used to perform. Our design
supports the different strategies and the results indicate that these indi-
vidual approaches can lead to similar findings in the data. In combina-
tion with standard eye-tracking visualizations, the system extends the
possibilities for the analysis of eye-tracking data of dynamic stimuli
without predefined dynamic AOIs.

For future work, we plan to perform a longitudinal study. The in-
vestigation of exploration strategies over several sessions is of special
interest. It could show if participants change their strategies, depend-
ing on their experience or the type of video material. We also plan
to extend the analytical methods of our design. Including additional
dynamic AOI information allows the use of common eye-tracking met-
rics as well as new possibilities for visual data representation. Audio
analysis could help interpret events of short attentional synchrony that
cannot be explained by visual aspects.
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