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Abstract

We introduce a new design for the visual analysis of eye tracking
data recorded from dynamic stimuli such as video. ISeeCube in-
cludes multiple coordinated views to support different aspects of
various analysis tasks. It combines methods for the spatiotempo-
ral analysis of gaze data recorded from unlabeled videos as well as
the possibility to annotate and investigate dynamic Areas of Interest
(AOIs). A static overview of the complete data set is provided by a
space-time cube visualization that shows gaze points with density-
based color mapping and spatiotemporal clustering of the data. A
timeline visualization supports the analysis of dynamic AOIs and
the viewers’ attention on them. AOI-based scanpaths of different
viewers can be clustered by their Levenshtein distance, an attention
map, or the transitions between AOIs. With the provided visual
analytics techniques, the exploration of eye tracking data recorded
from several viewers is supported for a wide range of analysis tasks.

CR Categories: Human-centered computing [Visualization]: Vi-
sualization application domains—Visual analytics;

Keywords: Eye tracking, space-time cube, dynamic areas of in-
terest, visual analytics

1 Introduction

How people look at different stimuli is important for research ques-
tions about human cognition [Duchowski 2002] and for the opti-
mization of visualization designs [Burch et al. 2011]. The main
focus of the past was on the analysis of static stimuli. Over the
last years, however, the analysis of dynamic stimuli such as video
has been gaining increasing relevance. For example, Tien and
Zheng [2012] measured gaze overlaps of a video that showed a
surgical task to compare experts’ gazes with the gazes of trainees.
Goldstein et al. [2007] examined similarities in the viewing behav-
ior of several users to identify centers of interest in movie scenes.
Marchant et al. [2009] described an approach to investigate the in-
fluence of directorial techniques on film viewers’ experience. Our
goal is to provide visual analytics techniques that can be used to
complement the quantitative means of analysis from those papers,
such as timespans of high attentional synchrony.

The analysis of the recorded gaze data can be performed statisti-
cally, resulting in quantitative measures that often require advanced
expertise for interpretation. Combined with appropriate visualiza-
tion techniques, the statistical results can be supported visually
and an explorative analysis of the data is possible. To this end,
ISeeCube provides a visual analytics approach for the qualitative
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exploration of the data. Visual analytics can be defined as “the
science of analytical reasoning facilitated by visual interactive in-
terfaces” [Thomas and Cook 2005]. It combines automated meth-
ods (e.g., statistical analysis, data mining) with visualization tech-
niques and human-computer interaction to extract knowledge from
the data.

Visualization methods for eye tracking data mainly concentrate
on static stimuli. Bee swarms, scanpaths, and heat maps are the
most common methods to visualize the gaze of individual or sev-
eral viewers. Although the application of these methods to dy-
namic stimuli is possible, their use is tedious, since the user has
to watch the complete video with the visualization overlay to gain
insights. With the Space-Time Cube (STC) and a linked timeline
visualization, we provide an overview of the video that allows for
a non-sequential search for timespans of interest. Density-based
color mapping of gaze points and spatiotemporal clustering indi-
cate where the user should look for timespans of potential interest
(see Section 4). For a detailed analysis of selected timespans, the
bee swarm visualization and heatmaps (animated and static) are still
available in ISeeCube.

For a statistical analysis of eye tracking data, the definition of Areas
of Interest (AOIs) in the stimulus becomes inevitable. Metrics such
as dwell times [Poole and Ball 2006] can be applied to the AOIs
to provide a quantitative summarization of the recorded data or for
further data visualization. To provide an interface between qual-
itative and quantitative analysis, ISeeCube includes an editor that
can be used to annotate AOIs before the gaze data is analyzed, or in
combination with additional information gained from the visualized
data. With these annotations, AOI-based scanpath comparisons of
selected timespans can be performed interactively.

To demonstrate the effectivenes of ISeeCube, we re-investigate a
previously evaluated data set [Kurzhals and Weiskopf 2013] and
present examples of how information can be extracted with the new
visualization approach (see Section 7).

2 Related Work

Space-Time Cube visualizations provide a static overview of spa-
tiotemporal data like recorded gaze. The data is represented in a
3D volume with one temporal two spatial and axes. Fixations can
be visualized as series of static points along the time axis and scan-
paths as 3D lines. Li et al. [2010] used the STC to visualize eye
trajectories for static stimuli. For the application to dynamic stim-
uli, Duchowski and McCormick [1998] described a space-time rep-
resentation of Volumes Of Interest for aggregated eye movement
trajectories. Kurzhals and Weiskopf [2013] visualized gaze data
from recorded video stimuli in an STC with density-based color
mapping of data points and spatiotemporal clustering in order to
extract AOIs and find timespans of attentional synchrony. These
papers did not include the possibility to analyze scanpaths of view-
ers, based on dynamic AOIs. We extend the work of Kurzhals and
Weiskopf [2013] by new AOI-based visualization techniques and
interactive viewer comparison methods.



Figure 1: Overview of the main design components: (a) viewer controls; (b) space-time visualization view; (c) parameter controls; (d) video
controls; (e) timeline visualization view.

Timeline representations are a common method to visualize the
temporal progression of events. André et al. [2007] designed de-
tailed timelines for hierarchies, relationships, and scale. We adapt
the principle to provide additional AOI information on demand and
adjust the presented information to the special requirements of gaze
data recorded from videos. In the field of eye tracking, Andrienko
et al. [2012] used horizontal segmented bars in a temporal view to
visualize the distance of eye trajectories to selected AOIs of static
graphs. Ristovski et al. [2013] used fixation time series similar to
scarf plots with a highlighting function for fixations on the same
AOI. These papers focused on static stimuli.

For the analysis of dynamic stimuli, Richardson et al. [2005] used
a scarf plot to visualize the recurrence of eye movements between
two persons. Weibel et al. [2012] integrated mobile eye tracking
data in ChronoViz, a tool to visualize multiple streams of time se-
ries data simultaneously. They used separate scarf plots for individ-
ual AOIs and concentrated their analysis on individual viewers; a
similar approach was used by Lessing and Linge [2002]. Stellmach
et al. [2010] introduced a models-of-interest timeline that shows
a viewer’s gaze distribution between various 3D objects in a vir-
tual environment with individually selectable colors for each object.
In their work, the main focus lies on the visualization of a single
viewer’s gaze data over time with a constant set of objects. In our
approach, we extend these ideas by allowing comparisons between
multiple viewers and providing an AOI timeline that visualizes the
dynamic changes of AOIs during a video.

For the visualization of scanpath comparisons, West et al. [2006]
introduced eyePatterns, a software to identify patterns and similari-
ties across fixation sequences. In their work, AOIs on a static stim-
ulus are labeled by characters, leading to visualization approaches
that require the user to remember for which AOI a label stands.

In dynamic stimuli, the number of AOIs can increase significantly
compared to static stimuli and with a character-based string, the
identification of the corresponding AOIs becomes an additional, in-
efficient search task. Tsang et al. [2010] used a timeline in combi-
nation with a tree visualization to compare duration, frequency, and
orderings of fixations, recorded from a mobile eye tracking device.
In their approach, only the temporal information from fixation data
is used. We include additional information from dynamic AOIs to
solve further research questions; e.g. we can analyze how long an
AOI was visible before the viewers looked at it.

Our main contribution is a visualization design that combines spa-
tiotemporal analysis methods of the STC with a new AOI-oriented
timeline visualization with viewer scarf plots that allows for an in-
teractive scanpath analysis and an efficient interpretation of the re-
sults. ISeeCube allows for an explorative analysis of gaze data that
is supported by automated techniques. Although it is designed for
video stimuli, the application to static stimuli is also possible.

3 Design Overview

To support various analysis tasks that require different visualiza-
tion approaches, ISeeCube consists of adjustable, multiple coordi-
nated views. Figure 1 shows an overview of the main components
that comply with the design of Kurzhals and Weiskopf [2013], ex-
cept for the timeline visualization view that provides additional new
methods for the analysis of the data. For the data representation of
each viewer, we use a comma separated format, containing x- and
y-coordinates and the frame number. ISeeCube includes no fixation
filtering algorithms itself, but can be used to visualize prefiltered or
raw gaze data.



The main components of ISeeCube are:

(a) Viewer controls: The viewer controls adjust the space-time
visualization view to the needs of the user. Data points and
clusters for the STC, the video preview with animated heat
maps, and additional wall projections of the data can be en-
abled as needed.

(b) Space-time visualization view: Within the STC, data points,
clusters, and scanpaths can be visualized. Additionally, the
spatiotemporal extent of annotated AOIs can be visualized on
demand (see Section 5.2).

(c) Parameter controls: By parameter manipulation, the STC
visualization can be adjusted interactively. The parameters
provide the user with the possibility to control the time scale,
kernel size for density-based filtering of data points, and fil-
tering options for the clustering.

(d) Video controls: The video navigation is achieved by standard
controls including a time slider and buttons for playback and
forward-/backward navigation. We can directly jump to shot
boundaries of a video by surrogate images connected to their
position on the time slider.

(e) Timeline visualization view: The timeline visualization pro-
vides temporal information of annotated AOIs and scarf plots
of individual viewers (see Section 6). Selecting an AOI in
the timeline shows its representation in the STC and provides
additional information of its spatiotemporal extent.

Additionally, ISeeCube provides an editor (see Section 5.1) for the
annotation of AOIs that are required for advanced visual analytics
techniques, and a control dialog to activate individual 3D scanpaths.

4 Analysis of Unlabeled Stimuli

The STC visualization allows for explorative analysis tasks that re-
quire no AOI annotation. The static representation of the spatiotem-
poral data can be investigated interactively to find interesting time-
spans directly without a complete sequential analysis of the video.
This part of our visual analytics approach uses the techniques de-
scribed by Kurzhals and Weiskopf [2013]. For completeness, we
briefly summarize their techniques in this section and refer to their
paper for more details. The data point and the cluster representa-
tion of the data can be used to find sequences of high attentional
synchrony as well as timespans that contain multiple AOIs.

4.1 Attentional Synchrony

The presence of motion in a video has a significant influence on
the viewers’ attention [Mital et al. 2011]. As a result, the viewers’
gaze can concentrate on a moving object in the same timespan, even
if the viewers watched the video independently from each other.
This effect is commonly known as attentional synchrony [Smith and
Henderson 2008]. To find attentional synchrony in a data set, gaze
is represented by data points that can be filtered by their distance
to the centroid of all points in a frame. As a result, only dense
regions with high attentional synchrony remain and can be detected
efficiently in the STC overview. Figure 2 shows an example scene.
Although the presented scene contains various AOIs, the viewers
attended to the car while it was moving toward the camera.

4.2 Multiple AOIs

During timespans of attentional synchrony, usually one AOI is of
high importance. In scenes with several moving objects or in static

Figure 2: Attentional synchrony: several viewers attended to the
same object simultaneously.

scenes without salient motion, the viewers’ gaze is usually dis-
tributed more asynchronously between different AOIs. A data min-
ing approach to find potential AOIs in a data set applies clustering
algorithms to the gaze data. We use the mean shift algorithm for
clustering eye tracking data [Santella and DeCarlo 2004] with ad-
ditional shot boundary information.

With a visualization of the spatiotemporal clustered gaze data,
timespans and positions of multiple AOIs in the video can be iden-
tified in the STC. The clusters are represented as smoothed hulls
around the gaze points they contain. In the video preview, animated
bounding boxes show the current spatial extent of a cluster as well
as a number that represents the cluster size by the amount of in-
cluded gaze points. Figure 3 shows an example of a timespan with
two AOIs and a blue and a yellow cluster. The corresponding video
frame reveals that the viewers’ attention was distributed between
two buildings. The blue cluster on the lighthouse has a higher num-
ber for cluster size, indicating that more attention was on this re-
gion.

Figure 3: Multiple AOIs: the extracted gaze clusters (blue and
yellow) indicate the spatial position and timespan where potential
AOIs exist in the video.

As Kurzhals and Weiskopf [2013] pointed out, the STC visualiza-
tion is not sufficient for all analysis tasks. The analysis of individ-
ual viewers and the visualization of similarity measures between
viewers can hardly be achieved with the STC alone. Therefore,
additional analysis methods are required. In particular, the defini-
tion of dynamic AOIs provides new possibilities to solve a wide
range of additional research questions. In the following sections,
we describe how we extend their work with AOI-based visualiza-
tion techniques.



Figure 4: The editor helps define dynamic, axis-aligned AOIs.

5 Annotation and Representation of AOIs

To support quantitative research on the data, the definition of AOIs
becomes inevitable. The user can either define AOIs in advance
to investigate scanpaths or the distribution of attention, or define
additional AOIs after an explorative analysis of the data. For this
purpose, the extracted clusters (see Section 4.2) can be investigated,
as they indicate the position of the AOIs where most of the view-
ers’ attention was. The definition of dynamic AOIs is supported by
an integrated editor that transforms the annotations into representa-
tions for the STC and the timeline visualization.

5.1 AOI Editor

For the analysis of dynamic stimuli, the definition of AOIs that ad-
just to the changes of moving objects becomes an important step in
the analytical process. We provide an editor (Figure 4) that allows
for the definition of dynamic, axis-aligned bounding boxes to mark
areas of interest. In our system, the ViPER-GT [Doermann and Mi-
halcik 2000] file format can be imported; ViPER-GT is a ground
truth editor commonly used for the annotation of video data sets.
Different categories can be defined to specify the analysis. With
the information provided by the cluster visualization, the user can
identify the most important objects and areas in a video and anno-
tate them with the editor. A new AOI is created by drawing key
bounding boxes in the video at different positions during the play-
back. Between the key positions, the bounding box is interpolated
linearly. Successive IDs are used for new AOIs, independent from
the category.

5.2 AOI Representation in the STC

Similar to the cluster visualization, the defined AOIs can be repre-
sented by static objects in the STC. Figure 1(b) shows the AOI that
annotates a car that appears in several shots of the video. The spa-
tiotemporal shape of the bounding box summarizes movement and
changes in size of the object for the complete video. The AOI rep-
resentations are also projected onto the walls to overcome problems
of depth perception. To solve occlusion problems due to overlaps
of different AOIs, we show only the outlines of the AOI representa-
tions and provide the user the possibility to show individual AOIs,
selected from the AOI timeline (see Section 6.1).

6 Timeline Visualization

The representation of AOIs in the STC provides valuable informa-
tion about the spatiotemporal extent of individual objects, but due to
occasional overlaps, displaying all AOI representations simultane-
ously leads to visual clutter. In the timeline visualization, this prob-
lem is solved by reducing the visualization to the temporal compo-

Figure 5: The AOI timeline (right) shows annotated objects or-
dered by their first appearance. Colored bars with attention his-
tograms indicate when an AOI was visible and how many viewers
looked at it over time. The category tree (left) allows the user to
hide or unhide AOIs from the timeline.

nent of the data and providing spatial information on demand in the
STC. The timeline consists of two synchronized streams that con-
vey the information of the chronological appearance of AOIs and
the scanpaths of all viewers. This combination allows for an effi-
cient identification of AOIs existing in a timespan and the order in
which viewers attended to them.

6.1 AOI Timeline

Similar to the STC visualization, the AOI timeline provides an
overview of the complete data set, but without the spatial infor-
mation. All AOIs are represented by rows, ordered by their first
appearance in the video. The first column shows the name and a
representative image of each AOI. The second column shows a col-
ored bar for each timespan in which the AOI exists (Figure 5). The
distribution of all viewers’ attention is displayed by an attention his-
togram in the colored bar. To distinguish between different AOIs, a
qualitative color scheme of 11 colors [Harrower and Brewer 2003]
was used. A color is locked to an AOI as long as the AOI exists and
can be mapped to another one as soon as the respective AOI disap-
pears. This strategy ensures an unambiguous mapping from AOIs
to colors, as long as there are fewer than 12 AOIs with overlapping
life spans. For additional AOIs, the color scheme is repeated and
possible ambiguities have to be solved by looking at the attention
histograms and the video preview.

Ordering the AOIs by their first appearance results in a timeline
where early appearing objects are placed in upper rows and late ap-
pearing objects in lower rows. This leads to problems when objects
appear early and reappear several times in the video. In this case,
a gap of empty rows occurs between the late appearing objects at
the lower rows and the reappearing object in the upper row. Com-
paring the histograms of the involved AOIs becomes more difficult
the farther the rows are apart. To solve this problem, we included a
tree view left to the AOI timeline (Figure 5) that shows all objects
ordered by their category. Either the complete category or indi-
vidual objects can be disabled to hide them in the timeline. With
this approach, users can exclude all objects that are not present in
the currently investigated timespan to concentrate on the relevant
information.

To obtain additional AOI information on demand, each row can
be selected individually to show an overview (see Figure 6). Each
overview is presented in a separate window and can be activated
as needed. The information provided by the overview consists of
a filmstrip and four histograms. The filmstrip shows representative
frames from the timespan of the marked AOI. The frames are cho-
sen by dividing the timespan in four equal parts. If an AOI does
not exist in one of the inner frame positions, the parts are further
divided until a valid frame is reached. The histograms show the
distribution of attention, AOI size, and AOI position:

• Attention: The attention histogram is the same as in the time-
line. The numbers mark the position of the frames from the
filmstrip.



Figure 6: The overview provides a filmstrip of the selected AOI and
histograms for attention, size, and x/y position.

• Size: The size of an AOI is measured as area size relative to
the video resolution. In Figure 6, the size histogram shows
several timespans where the size of the AOI increases at the
end of a shot. In combination with the information provided
by the position histograms, we can interpret that the car was
moving close to the camera in these situations.

• Positions X,Y: x- and y-coordinates are measured at the
bottom-center point of the AOI. In the histograms, high val-
ues represent a position in the right part of the scene and in
the upper part, respectively.

For future work, the provided information about the temporal de-
velopment of AOI-related measures can be enriched by additional
histograms such as an attention measure, normalized by the size of
an object. To analyze the scanpaths of the recorded viewers, the
scarf plot visualization can be used.

6.2 Viewer Scarf Plots

Each viewer in the data set is represented by a horizontal scarf plot
that shows a frame-wise mapping of the viewer’s gaze data to the
annotated AOIs. If a gaze point in a frame is considered to be in
an AOI, the corresponding color of the AOI is used to mark this
frame in the plot. If either no gaze point is available, or cannot be
assigned to an AOI, the frame is marked black. A gaze point is as-
signed to an AOI when it lies inside the bounding box of the AOI in
the respective frame. Due to the dynamic content of video stimuli,
overlaps between AOIs are often inevitable. Two common methods
to handle this problem are either to distribute attention between the
overlapping AOIs, or to calculate the distances between the gaze
point and the involved AOI centers and assign the point to the AOI
with the shortest distance [Holmqvist et al. 2011]. We decided to
use the latter, since ambiguities are not supported by the common
string comparison algorithms that we used for scanpath analysis.

Since the AOI timeline and the viewer scarf plots are synchronized,
the user can see directly which AOIs are involved in the current
timespan and what object they represent. As an example, Fig-
ure 1(e) shows a selected timespan with two AOIs (Misc 0, Car 13).
Corresponding to the attention histograms, the viewer scarf plots
show that all viewers attended to Car 13, only Viewer 10, Viewer
11, and Viewer 15 attended to Misc 0 for a short period of time.

The generated scarf plots can be interpreted as strings of IDs that
refer to their AOIs. These strings can be used for interactive scan-
path analysis, whereas the scarf plot visualization allows for an easy
interpretation of the results.

6.3 Scanpath Similarity and Cluster Analysis

To support advanced analysis in the context of visual analytics,
ISeeCube integrates automatic processing of eye tracking data to
assess the similarity of viewers’ scanpaths. We provide three dif-
ferent similarity functions that can be used with hierarchical clus-
tering. Users can thus explore different facets of the dataset and
select the distance function that fits their objectives and analytical
goals best. The similarity functions available are the Levenshtein
distance, a function based on attention distribution, and one based
on AOI transitions. They are comparable to those by Ristovski et
al. [2013], but have been extended to support video eye tracking
data.

The Levenshtein distance [Levenshtein 1966] was used previously
as a distance measure for object scanpaths [Holmqvist et al. 2011]
by representing scanpaths as strings of AOIs. Levenshtein’s algo-
rithm yields a distance for two input strings that represents the num-
ber of edit operations to transform one string into the other. As our
measure is specifically tailored to videos rather than static images,
we incorporate gaze duration for each AOI by constructing a frame-
wise string of AOIs, where each character of the scanpath string
corresponds to the AOI focused in each frame of the video. The
inversion of the Levenshtein distance yields a similarity measure
incorporating local and temporal coherence of the scanpath strings
and penalizes similar object transitions that have low temporal cor-
relation.

The second similarity measure focuses on the distribution of view-
ers’ attention. It aggregates the overall attention that each of the
viewers gave to each of the AOIs by counting the number of video
frames during which a viewer was looking at the respective AOI.
It then normalizes this value with the maximum attention that a
viewer gave to an AOI. To quantify the difference between the re-
sulting attention maps we use the squared difference between each
of the components, which is normalized with the overall number of
AOIs. A similar measure for the attention map difference for still
images is mentioned by Holmqvist et al. [2011].

The third similarity measure focuses on viewers’ transitions be-
tween AOIs. It is based on a transition matrix for each viewer in-
cluding an initial and a final state to incorporate the first and last
AOI of a scanpath. Each of the values of the transition map is nor-
malized by the maximum number of transitions for a pair of AOIs.
Again, similarity is quantified by the sum of squares of pairwise
differences in normalized transition frequency, which is normalized
with the overall number of pairs of AOIs.

Based on a selected timespan, we provide a hierarchical clustering
algorithm [Hastie et al. 2009] that finds groups of similar scanpaths
according to the chosen similarity measure. The clustering is visu-
alized as a dendrogram to the left of the scarf plots (Figure 7), and
provides users with a global picture of scanpath similarities. Hi-
erarchical clustering starts out with a maximal number of clusters,
with each scanpath forming its own cluster. The clusters are then
merged consecutively, with the pair of most similar clusters being
merged at each iteration of the algorithm. We use average linkage
to measure cluster similarity, i.e., the arithmetic mean of all pairs of
instances in two different clusters.

Figure 7 illustrates the different effects of the similarity measures
on scanpath clustering. The selected scene (see Figure 8) contains
three labeled objects: a TV station logo (light blue), a woman (or-
ange), and a car with its engine opened up (purple). Figure 7(a)
shows the clustering with the Levenshtein measure. Here, the order
of the AOIs and their temporal correlation play a major role for the
similarity of two scanpaths. The first cluster on the highest level
comprising the upper five elements of the list can e.g. be described



(a) Levenshtein (b) Attention Map (c) Transition Map

Figure 7: Clusterings of the initial scene of the video containing a
TV station logo (light blue), a woman (orange), and a car (purple).
The scene is clustered using each of the three similarity measures.

as containing all scanpaths in which viewers were looking solely
at the station logo (light blue) during the second half of the scene,
while the second cluster comprises the rest of the scanpaths.

Figure 7(b) contains a clustering with the attention map measure,
considering only the overall attention that each AOI received from
a viewer. Here, it is also intuitive to find a good description of the
two main clusters, with the one comprising the upper part of the
list containing all scanpaths where the attention for the station logo
(light blue) dominates the scanpath. This cluster is then further
subdivided into scanpaths that contain solely the station logo (the
upper three elements), and scanpaths with further AOIs. The lower
part of the list contains scanpaths in which the woman (orange) and
the car (purple) together received most of the attention.

The transition-based clustering is depicted in Figure 7(c). Here, a
division is made between scanpaths that end with the woman (or-
ange) and those that end with the station logo (light blue). The
first cluster is further subdivided into scanpaths that start with the
car (purple), and those that start with the woman. Viewer 3 can
be easily identified as an outlier within this cluster. The scanpath
starts with the car, continues with the logo, and finally ends with
the woman thus containing three AOIs. The difference between the
transition-based and the attention-based measure is illustrated by
how differently they treat the scanpaths of Viewers 3 and 12. With
the attention map measure, their respective clusters are merged very
early, due to the very similar distribution of attention between all
three AOIs. The transition-based measure, in contrast, merges their
clusters in the final iteration because both scanpaths have only one
identical transition: from the initial state to the car.

7 Case Study

To demonstrate how ISeeCube can be used to extract information
from recorded gaze data, we re-investigate the data set described
by Kurzhals and Weiskopf [2013]. We can reproduce their STC-
related results and substantially improve the analysis of the data
set with AOI-based methods. In a qualitative user study, they re-
ported the strategies and findings of five participants for the analy-
sis of a promotional video. The video (length: 1:23 min, resolution:
1280×720) was shown on a Tobii T60 XL eye tracker with a 24”
screen (resolution: 1920×1200) at a distance of 65 cm from the
eyes. The recorded data was preprocessed with the Tobii Fixation
Filter (velocity threshold = 10 pixels/samples; distance threshold =
10 pixels), representing smooth pursuits as short fixations close to
the raw data. In separate sessions, 16 viewers watched the video
as one of 13 short clips in a random order. The viewers were in-
structed to watch attentively and summarize the main plot after each
video. In the investigated video clip, a new car is presented and

Figure 8: Attentional synchrony: shortly after the video starts, all
viewers attended to the face of the person and the station logo. In
the STC, high attentional synchrony is clearly visible (indicated by
the circles).

Figure 9: Motion signatures: high attentional synchrony on the car
leads to characteristic motion signatures that are clearly visible on
the walls (indicated by the ellipses).

various shots of the driving car along with views of Mediterranean
landscapes are shown. An accompanying video and high resolu-
tion images of the case study can be found at http://go.visus.uni-
stuttgart.de/stva. The following paragraphs discuss six different
findings from the eye tracking data and how they were obtained
by using ISeeCube.

1. Attentional synchrony: The video begins with a woman, stand-
ing next to a car. After a filter step to remove spatially sparse data,
the data point representation in the STC (Figure 8) shows high at-
tentional synchrony by densely located gaze points in the upper left
corner of the video, the position where the face of the woman and
the station logo were. Although attentional synchrony on an AOI
leads to peaks in the attention histogram, this conclusion cannot be
made from the AOI histogram alone: The attention histograms in
the object timeline show that the viewers looked at the car (Car 9)
first and then shifted their attention to the smaller region where the
face of the woman (Person 7) and the station logo (Misc 0) were
present. Since the size of Car 9 (purple box in the STC) covers
more than half of the scene and the viewers’ gazes were distributed
in this area (see projection walls at the very beginning), attentional
synchrony is not present. This example shows that AOI-only anal-
ysis can be misleading and that it should be accompanied by STC-
based investigation.

2. Motion signatures: In the video, four shots show the promoted
car driving through the scene. High attentional synchrony on the
car is present in all of these shots. As a result, the data point rep-
resentation clearly shows signatures of the motion of the car. With
the timeline visualization, the additional AOI information can be



Figure 10: Dominant spatiotemporal gaze cluster: the cluster in
the selected timespan corresponds well with the annotated AOI of
the car.

used to investigate how changes in the properties of an AOI influ-
enced the distribution of attention. As an example, Figure 9 shows
the third shot where the car drives over a bridge. The attention
histogram (Car 13) shows that an increasing number of viewers at-
tended to the car while it was moving toward the camera. The size
histogram in Figure 6 shows this shot after the first long timespan
without the object. We can see that the object size increased signif-
icantly toward the end of the shot, resulting in higher values in the
attention histogram.

3. Dominant spatiotemporal gaze cluster: By filtering out clus-
ters that contain few gaze points, one of the biggest clusters can be
found in the timespan in which the promoted car is presented for
the first time (see Figure 10). The AOI representation of the car
shows that the identified cluster corresponds well to the annotated
AOI; this supports the approach of using cluster information for the
definition of dynamic AOIs. The attention histogram confirms that
Car 13 received most of the viewers’ attention in this timespan.

4. Distribution of attention: At the end of the video, a spokesper-
son (Person 34) appears talking about the car (see Figure 11). By
filtering out small clusters, this event becomes visible in the STC.
With the additional AOI information, we can investigate how long
different objects received the viewers’ attention while they existed:
With the attention histograms in the timeline, as well as with the
gaze points on the projection walls, we can see that the attention
of many viewers lies on the face at the beginning, but shifts to the
lower left part of the video for a short time (red cluster). At this
point in time, the name of the person (Misc 45) blends in, the view-
ers’ attention is drawn to the text and then back to the face. With
the timeline visualization, the interpretation of the temporal distri-
bution of attention can be achieved more efficiently, compared to
common techniques such as a bee swarm or an animated heat map.

5. Outlier detection and individual viewer behavior: Figure 12
shows a timespan in the video with a beach and several boats in
the water. By investigating the scarf plots in this timespan, we can
see that Viewer 10 was the only one who looked mainly at the logo
(Misc 0) in the upper left corner during the shot. The clustering
with the Levenshtein distance confirms that Viewer 10 is an outlier
in this timespan. This event could also be detected by investigating
the 3D scanpaths of all viewers simultaneously. However, when the
AOIs are close to each other, the 3D scanpaths would cause visual
clutter that impairs the identification of such an outlier scanpath,
while the scarf plots would show a result similar to the presented
finding.

6. Multiple viewer groups: In the timespan that is shown in Fig-
ure 12, the sun reflects on a boat on the left (Misc 40). The clus-
tering with the Levenshtein distance shows that two main groups of

Figure 11: Distribution of attention: the biggest clusters appear at
the head of the person. The red cluster indicates the name (Misc
45) that blends in after the person begins to talk.

Figure 12: Outlier detection and individual viewer behavior: the
attention of seven viewers was drawn to a reflection on a boat, while
the others ignored it. Viewer 10 (scanpath represented by the blue
line) was the only one that attended to the station logo (Misc 0).

viewers can be identified for this scene: one group that looked at
the boat shortly after the blinking reflection appeared (Viewers 8–
2); and a second group that ignored this reflection (Viewers 7–12).
Viewer 7 looked at the boat after the reflection disappeared; in this
case, it is not clear if the reflection was the cause for the attention
shift.

8 Conclusion

We presented a new visual analytics method for the analysis of gaze
data, recorded from video, that combines the advantages of spa-
tiotemporal analysis of the STC with AOI-based methods for the
temporal analysis of viewers’ scanpaths. In multiple coordinated
views, the user can explore the data interactively. In combination
with automated algorithms (e.g., spatiotemporal gaze clustering,
scanpath clustering), the user is supported in various analysis tasks.
The presented case study shows that previous findings could be con-
firmed and new findings were made possible with the integration of
AOI-based timeline visualizations and string comparison methods.

For future work, we plan to improve the definition of AOIs. Gaze
clusters provide valuable information about the position of impor-
tant objects that can be used to support automatic object detection
and tracking. To improve the precision of AOI-based measures, we
plan to include more complex structures for dynamic AOIs with



higher-order interpolation methods, a separate handling of smooth
pursuits in the recorded data, and compensation methods for possi-
ble inherent delays of the eye tracking device. For further evalua-
tion of the visualization design, we plan to conduct additional user
studies with several analysis tasks as well as longitudinal studies
with multiple analysis sessions to gain insight into the development
of different strategies of users while they use ISeeCube.
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