
Visual Monitoring of Process Runs:
An Application Study for Stored Procedures

Matthias Meyer Fabian Beck∗

University of Stuttgart, Germany

Steffen Lohmann†

Fraunhofer IAIS, Germany

20:00

on time late

Color

Filter

Time Frame

none

2013-08-12 20:00Start:

2013-08-13 08:00End:

Details
Name: MPFR_REP
Status: Successful
Type: Daily
Start: 2013-08-13 03:15
End: 2013-08-13 04:42

Histogram Trend

B

A

C
early

22:00 00:00 02:00 04:00 06:00 08:00

delay

execution on time

Figure 1: User interface sketch of the visualization approach representing the execution of stored procedures on a timeline (A). Deviations from
other runs are encoded in color (B) and detailed in histogram and trend views (C).

ABSTRACT

Stored procedures are used in database systems to process and ag-
gregate data. Hundreds of stored procedures often form a complex
process network with documented and hidden dependencies that is
difficult to understand, maintain, and debug. This paper introduces
a novel approach to support such tasks by visually comparing a
specific process run to other runs of the same process. The visu-
alization is based on a force-directed node-link diagram arranged
on a timeline. Color coding, histograms, and trend charts are used
to highlight temporal deviations. The approach has been imple-
mented as an interactive web application and used by professional
database developers for solving realistic maintenance and debug-
ging tasks. The feedback of these expert users confirms the useful-
ness and practical relevance of the approach.

1 INTRODUCTION

Processes are monitored to warrant the correct behavior of a sys-
tem. Experience helps the maintainers of the system judge whether
a process they are observing runs within its usual boundaries or
shows some uncommon behavior. For that, they do not have to re-
member every previous run of the process precisely. They rather
develop a fuzzy feeling or intuition that tells them whether parts of
the process behave in alignment to past runs. Deviations from his-
toric patterns can be observed as subprocesses that take unusually
long or as a changed order of a typical sequence of events.

Gaining sufficient experience to monitor a process like this, how-
ever, takes time, and hence, is costly. Moreover, if the process ex-
ceeds a certain size and complexity, it becomes difficult if not im-
possible to develop the required intuition. Subjective judgment or
change blindness could further bias perception. This paper inves-
tigates how visualization can support users to monitor processes in

∗e-mail: fabian.beck@visus.uni-stuttgart.de
†e-mail: steffen.lohmann@iais.fraunhofer.de

an objective and reliable way by comparing them to previous runs.
The goal is to aid inexperienced as well as experienced observers to
detect anomalies and problems in a specific run of a process.

The focused application are stored procedures used in database
and data warehouse systems to process and aggregate data. The
stored procedures run as a sequence of connected subprocesses that
are repeatedly executed according to a schedule with explicitly or
implicitly defined dependencies. The execution times change de-
pending on the data contained in the database and the general work-
load of the servers. Since hundreds of stored procedures might need
to be executed and, typically, dependencies are only partly docu-
mented, even small deviations in the execution schedule could lead
to performance loss or errors. The database administrators and de-
velopers need to locate the problem and understand its cause.

Our visualization approach to support maintainers of database
systems in this regard is illustrated in Figure 1: Its main view (A)
is based on a node-link diagram depicting an individual execution
of the stored procedures. Each node represents an executed pro-
cedure and is arranged on a timeline according to its start and end
time. Documented dependencies are shown as links. An adapted
force-directed layout algorithm arranges the nodes in a vertical or-
der. Deviations from previous runs are encoded by color according
to a color scale (B). The user can retrieve details on demand that
provide more context for temporal deviations in the form of his-
tograms and trend charts (C). The example given in Figure 1 shows
a run of the stored procedures that starts on time, even a little earlier
than usual, until a sequence of shorter events at the bottom of the
node-link diagram causes a delay and leads to a late termination.

We see our main contributions in mapping a relevant database
maintenance problem to a visualization question (Section 3) and
presenting an interactive solution (Section 4). The approach is
novel, as previous work has not investigated this application or, in
general, has not studied deviations of process executions from time
schedules or historic runs in sufficient detail (Section 2). Having
worked closely together with an industry partner and tested the tool
in a realistic scenario with domain experts gives us confidence that
our approach provides a valuable tool for database administrators
and developers (Section 5).

beckfn
Typewriter
PacificVis 2016



2 RELATED WORK

Visualizing stored procedures as a process network on a timeline
means applying graph visualization techniques to a software engi-
neering problem. Although the procedures are executed in a spe-
cific temporal order, we do not focus on dynamic graph visualiza-
tion as defined by Beck et al. [5], which would require analyzing a
changing graph topology over time. Our visualization approach is
related to visual graph comparison (e.g., [1, 4, 18, 28]). However,
instead of comparing multiple graphs, we study a specific batch run
of stored procedures as a graph in detail and only integrate temporal
context from other runs by color coding and details on demand.

Software systems are often visually abstracted as graphs, repre-
senting not only static but also dynamic dependencies recorded at
runtime of the systems. UML sequence diagrams [8] are a standard-
ized way to encode object activity and dynamic dependencies: ob-
jects are visualized as linked bars on a vertical timeline. Although
being intended to be a modeling tool, these diagrams can be also
applied to visualize recorded interaction data of objects [20] or web
services [14]. Zinsight [11, 12] applies a similar technique to op-
erating system events, organizing them by time, type, and project
space in a sequence-diagram-like main view; additional views can
be used to retrieve color- and space-encoded timing information.
Greevy et al. [23] extend a sequence diagram into 3D to visually
stack instances of the same classes. Our visualization approach
also uses rectangles to indicate activity, but does not assign each
stored procedure an individual column or row because too many
procedures need to be visualized.

Holten et al. [24] focus on the scalable visualization of dy-
namic dependencies by drawing massive sequences of links be-
tween classes organized in columns, without depicting activity pe-
riods on the timeline. With a similar focus, Beck et al. [6] visual-
ize dynamic calls as a sequence of changing graphs in juxtaposed
columns. However, these approaches only explore one execution
while we study multiple repeated ones.

Another abstraction of execution information are stack traces,
which are often depicted as hierarchies of executed methods in
forms of icicle plots [13]; these, however, only work well for syn-
chronous calls, but could not easily encode asynchronous execu-
tions like we have for stored procedures. Other visualizations depict
different tasks or processes on a horizontal timeline, for instance, as
rows connected by links [25, 29] or as bundled bars [15] (more ex-
amples are surveyed by Isaacs et al. [26]). In this context, however,
we only found one approach that discerns and visualizes multiple
executions: Trümper et al. [33] compare two executions by juxta-
posing their hierarchical stack trace visualizations and connecting
similar execution phases by bundled links.

Our approach can also be classified as a visualization technique
of time-oriented data [2]. It is related to project planning dia-
grams like Gantt charts [10, 19] and diagrams used in the mod-
eling of algorithms, workflows, and business processes (e.g., flow
charts, BPMN, EPCs). Planning Lines [3] extend Gantt charts to
encode temporal uncertainty: rectangles representing the activities
are adapted showing, for instance, earliest and latest starting times.
TASM [32] compares multiple versions of schedules based on Gantt
charts and network layouts. Although these approaches provide
possibilities to compare several instances of a process, they are not
targeted at contrasting a selected instance of a process to hundreds
of previous instances as required in our scenario. LiveGantt [27]
demonstrates that Gantt charts can be made scalable; they, however,
do not show dependencies between activities.

Most visualizations of time-oriented data (e.g., Gantt charts)
can be used to visually compare several instances by juxtaposing
or overlaying diagrams [22]. While these visual comparison ap-
proaches allow to easily compare a few instances, we want to con-
trast a single selected instance with a long history of previous in-
stances. This can be described as an asymmetric visual compari-

son [7]. For this purpose, an explicit encoding of the difference as
described in the taxonomy of Gleicher et al. [22] offers a solution:
we encode time differences explicitly in the color of graph nodes.
While this approach scales to comparing a current to many historic
instances, it is only an indirect, aggregated form of comparison.

In general, we are not aware of any approach that contrasts a
selected process run to other runs of the same system to analyze
anomalies in the temporal behavior of the selected one, neither for
stored procedures nor for comparable application scenarios. More-
over, supporting database developers and maintainers monitoring
their systems of stored procedure or other data transition infrastruc-
tures seems to be an underexplored area of research. Although we
focus on a specific area of application, related areas such as dy-
namic graph visualization, visualization of software behavior, and
visualization of time-oriented data could profit from our results and
the general lessons learned.

3 VISUALIZATION PROBLEM

The first step of building a visualization approach that supports
database administrators and developers is to transform the domain
problem into a visualization problem. To this end, we first analyze
the specific application background, then clarify terminology and
build a graph-based data model for stored procedures, and finally
formulate requirements for the visualization approach.

3.1 Application Background

Stored procedures are used in relational databases and data ware-
house systems to transform and aggregate data. They can be consid-
ered as small programs that assemble multiple SQL queries, contain
conditional expressions, loop constructs, and allow the declaration
of variables [17]. Stored procedures are supported by all major re-
lational database management systems, though following slightly
different standards. A typical application scenario of stored pro-
cedures is the following: data is collected in a production database
system and batch processed stored procedures are used to transform
and aggregate the collected data into a data warehouse system. Dur-
ing batch execution, the production system, however, has to be in-
active, which is the case for many systems at night. Advantages of
this architecture are two decoupled database systems that both work
with high performance after the data update is completed.

For this work, we collaborated with a medium-sized wholesale
company. Their main data warehouse system, used by about 400
end users, serves as our application example throughout the paper.
For this system, they use the described batch processing architec-
ture to update the data. Different batch executions are applied for
daily, weekly, monthly, quarterly, semiannual, and annual updates,
which are triggered according to a specific schedule (i.e., always
at the same time of the respective day). Stored procedures follow
a strict naming scheme that encodes the type and purpose of the
procedure, distinguishing between aggregation, export, data load-
ing, data transformation, and service procedures. As a basis for
comparison, we use all executed batch runs of the stored procedure
system from January 1, 2000 to September 4, 2013. Within those
more than thirteen years, 2,808 different stored procedures were ex-
ecuted, totaling up to more than 3.5 million individual executions
of procedures. The database developers confirmed that the system
of stored procedures, the database software, and server hardware
were only changed gradually in this frame of time. The only excep-
tion was a major hardware upgrade that happened at the end of the
studied period—speed up effects were expected.

Within a batch run, the stored procedures need to be executed in
a specific order. Otherwise, it is no longer warranted that the results
are a valid aggregation of the data because many procedures contain
implicit assumptions on preprocessing steps. These assumptions
are documented as predecessor–successor dependencies and stored



in a separate database. The developers try to document all depen-
dencies and keep this documentation up to date. However, it is
difficult to maintain a complete and consistent record of all depen-
dencies. Further, some dependencies are too complex to be mapped
to the database scheme. In consequence, there also exist undocu-
mented dependencies that cannot be explicitly retrieved from the
database; they are only implicitly defined through the batch rou-
tines of the system.

3.2 Terminology and Data Model
In this paper, we visualize the batch executions of a system of stored
procedures, in short executions or runs. We use the terms stored
procedure and procedure interchangeably. An executed procedure
denotes an executed instances of a stored procedure being part of
a batch run. The naming scheme used in our application example
allows us to identify semantically related procedures, called similar
procedures: procedures sharing at least three of five critical literals
in their names (with few domain-specific exceptions).

Formally, we model a set of batch executions of a stored pro-
cedures system as a directed graph G = (V,E) where a node
v ∈ V represents an executed instance of stored procedure sp(v).
We define the set of all executed instances of a specific proce-
dure p as V (p) = {v ∈ V |sp(v) = p}. Each executed procedure
v is assigned a start time tstart(v) and an end time tend(v) where
tstart(v) < tend(v); the runtime of the executed procedure is defined
as ∆t(v) = tend(v)−tstart(v). Further, the reference time tref(v) is the
earliest timestamp of the data that is processed as part of the batch
execution that v is part of (e.g., if data of interval [t1, t2] is pro-
cessed in a batch execution, tref(v) = t1 for all executed procedures
v of the batch execution); we use it to define a relative start time
rtstart(v) = tstart(v)− tref(v). A documented predecessor–successor
dependency between two executed procedures v1 and v2 is modeled
as a directed edge (v1,v2) ∈ V ; v1 is called predecessor of v2 and
v2 is called successor of v1.

To contrast an executed procedure v with all executed instances
V (sp(v)) of the procedure sp(v), we compute the median rtstart(v)
of all relative start times rtstart(v′) over all instances of the proce-
dure v′ ∈ V (sp(v)) (since the dataset often contains skewed dis-
tributions and extreme outliers, we do not use mean values). The
lateness of v is the deviation of the relative start time rtstart(v) from
this median: l(v) = rtstart(v)− rtstart(v). Hence, a positive lateness
value indicates a later relative execution than in the median case,
and a negative value an earlier one. Analogously, we calculate the
median runtime ∆t(v) over all runtimes ∆t(v′) with v′ ∈ V (sp(v))
and define the runtime deviation of v as rd(v) = ∆t(v)−∆t(v). A
positive runtime deviation, hence, means a runtime longer than me-
dian, a negative value a shorter one.

3.3 Requirements
As part of the discover phase [30] at the beginning of the project, we
discussed the application in detail with our industry partner. One of
the authors had considerable experience in the domain because he
had worked for the industry partner as a database developer. He led
the discussions and acted as an intermediary between domain and
visualization experts. Target users of the approach are the database
maintainers and developers, who monitor and extend the described
data warehouse system on a daily basis.

From those discussions, we learned that the system of stored pro-
cedures is difficult to maintain because it consists of a high number
of procedures and contains complex, partly undocumented depen-
dencies. The developers would appreciate tool support for mainte-
nance tasks of the system, such as monitoring the behavior of the
system, optimizing its performance, finding sources of errors or de-
cays of runtime speed. Observing effects of gradual changes in the
data, stored procedures, or hardware onto the behavior and sched-
ule of the system are further relevant use cases. Since these tasks

are rather exploratory, a visualization approach will likely provide
the necessary flexibility.

Thus, the visualization approach has to show a system of exe-
cuted stored procedures as defined in the data model. Since the
developers and maintainers usually focus on the analysis of a spe-
cific run, the tool does not need to show all executions at the same
time, but it is sufficient to show time frames of only a few hours
up to a few days. Still, the history of executions should be easily
explorable by switching the time frame. Documented and undocu-
mented dependencies structure the executed procedures. For each
executed procedure, it is further important to provide data from all
other runs of this particular procedure. In summary, the specific
requirements of the visualization tool are to

1. give an overview of the temporal sequence of procedures
of a selected execution,

2. reveal and depict documented and undocumented depen-
dencies between executed procedures, and

3. provide temporal context for the selected execution to show
deviations from the schedule observed in other executions.

To address these requirements in a visualization approach, a de-
sign and implementation phase [30] followed the discover phase:
We applied an iterative process, discussing a design decision, im-
plementing it in a prototype, collecting feedback from industry
stakeholders, and continuing with a refinement or other design deci-
sions. The following section describes the outcomes of this process.

4 VISUALIZATION APPROACH

Our visualization approach is illustrated in Figure 1, while a screen-
shot of its implementation as a tool is shown in Figure 2. The
graph of executed procedures is arranged as a node-link diagram
on a timeline in the main view (Requirement 1). A specialized
force-directed layout algorithm arranges the nodes vertically, plac-
ing nodes nearby that are linked or share similar properties accord-
ing to domain-specific definitions (Requirement 2). While the dia-
gram shows only one run of the system, context from the history of
runs is provided by coloring the nodes according to their lateness
(or other measures, such as runtime or status) and showing details
in histograms and trend diagrams (Requirement 3). Interactions
further ease the exploration of the data with our approach.

We implemented the visualization approach as a web-based tool,
using JavaScript with the visualization library D3 [9] for the front
end and, on the server side, Python with Flask. The server ap-
plication wraps the database access through a REST web service
providing the data in JSON format for the front end.

4.1 Graph Layout
We visualize the graph of executed procedures as a 2D node-link
diagram because this type of diagram is easy to interpret and allows
for a flexible arrangement of the nodes on a timeline. In contrast,
an adjacency matrix representation might be more scalable [21] but
is harder to explain to users, is more difficult to combine with a
timeline, and would be mostly empty because the graph of stored
procedures is usually quite sparse. Also, path-related tasks (e.g.,
identifying chains of executed procedures) are important, which are
difficult to perform in matrix representations [21].

In the following, we discuss the layout of the diagram and the
representation of nodes. While it is straightforward to visualize
documented dependencies, a particular challenge is to reveal un-
documented ones. They are not detected automatically in our ap-
proach because one needs additional domain knowledge to finally
decide. However, there exist indicators that two executed proce-
dures depend on each other: first, the potential successor is exe-
cuted soon after the potential predecessor ended; second, they share
a similar lateness; and third, they are similar regarding the scheme



Figure 2: Visualization tool showing a nightly run of a stored procedure system and showing details of a selected procedure DWT1010P executed
on August 1, 2013; the respective node is highlighted in the figure by a red rectangle.

encoded in their name (name similarity). Therefore, we place nodes
vertically close to each other if they are similar or have similar late-
ness (lateness similarity).

Timeline: Since an overview of time is our first requirement, we
use a timeline as the horizontal axis of the node-link diagram. Each
executed procedure v∈V is represented by a rectangular node, hav-
ing its left side aligned with the start time of the executed proce-
dure tstart(v), and its right side with the end time of the executed
procedure tend(v). Hence, similar as in a Gantt chart, the width of
the nodes scales according to the runtime of the represented exe-
cuted procedure ∆t(v). The time constraints dictate the horizontal
arrangements of nodes, but we are still free to move the nodes verti-
cally. To find a good vertical arrangement, we implemented a layout
algorithm that is described below. Edges in the graph representing
the documented dependencies are drawn as straight links. Although
these edges are directed, we do not need to draw arrow heads or use
other encodings of direction because the context of the timeline al-
ready clarifies the predecessor–successor direction of dependence.

Graph Simplification: First experiments of visualizing the
graph on a timeline already showed us that a frequent pattern ap-
pears and dominates the visualizations: single executed procedures
depending on a set of procedures previously executed in parallel
having no dependencies to previous nodes. In the visualization,
these form fan-like structures [16] because multiple links merge
into a single node. While these patterns produce considerable clut-
ter in the visualization, their information density is rather low: they

fan detection

expand collapse

Figure 3: Graphical simplification of a fan pattern in the node-link di-
agram, illustrating the interactive collapsing and expanding of a sub-
graph implementing the fan pattern.

typically represent simple data loading processes. Inspired by the
graph motif simplification of Dunne and Shneiderman [16], our ap-
proach detects these fan patterns automatically and visualizes them
in an simplified form as illustrated in Figure 3: all predecessor
nodes in the fan are collapsed into a thin but higher rectangle of
a fixed size closely attached to the successor node.

Formally, we collapse those groups of at least five nodes (a) that
do not have any predecessors, (b) that have the same successors,
and (c) whose successor does not have any other predecessors not
being part of the group. In contrast, the successor, which repre-
sents the merging point of the fan, is preserved. This simplification
largely reduces the visual clutter produced by a fan pattern, without
destroying its characteristic triangular shape. Clicking on the col-
lapsed node expands the fan again to its original representation. To
circumvent a layout update of the whole graph whenever a fan node



is expanded, enough space is reserved by default, since the layout
algorithm described in the following considers expanded fans.

Vertical Arrangement of Nodes: While the horizontal position
of the stored procedures is predetermined by the timeline, we need
an appropriate layout to vertically arrange the nodes. It soon be-
came clear that a layout like in Gantt charts, where each node is
represented in a separate row, would be too space-consuming be-
cause of the high number of procedures that we have to deal with.
Instead, we decided to arrange the nodes freely on the vertical axis,
optimizing the following criteria:

1. avoid overlap of nodes,

2. reduce link lengths to place dependent nodes close,

3. keep the graph compact,

4. spatially separate isolated nodes (i.e., nodes without any de-
pendencies) from those having incoming or outgoing depen-
dencies (isolated nodes are moved to the top),

5. place nodes with a high lateness similarity close to each other
to make undocumented dependencies visible,

6. place nodes being part of the group of predecessors in fans
close to their successor, and

7. place nodes with a high name similarity close to each other to
indicate semantic groups.

Force-directed graph algorithms allow for encoding layout opti-
mization goals like these as forces. However, they usually arrange
nodes in a 2D layout while, in our case, the horizontal position of
the node is determined already by the timeline. To apply a force-
directed algorithm, hence, we first have to restrict the arrangement
of nodes in the algorithm to vertical movement.

Our implementation is based on the force-directed layout of the
D3.js library [9]. By default, this algorithm supports optimization
criteria 1-3. To limit the algorithm to vertical positioning, we set
the horizontal component of the nodes according to their position
on the timeline and skip all changes of the horizontal component
in the force-directed algorithm. To implement optimization criteria
4-7, we added an extra force for each of them. These forces contain
parameters we tuned until the algorithm produced satisfying results.

Since one of our main goals was to reveal undocumented de-
pendencies, the results might not be optimal considering only com-
pactness (3). While undocumented dependencies are not explicitely
computed, they become explorable through placing nodes with a
similar lateness next to each other (5). Also, semantic grouping (7)
improves to build semantic relationships between nodes that have
no documented dependencies. These extensions produce virtual
lines of implicitly connected nodes in the layout.

4.2 Temporal Context
Laying out the graph of executed procedures as described above
provides a good overview of a single run of the system. However,
when we do not only want to rely on experience, anomalies in the
execution only become visible if we add temporal context to the di-
agram that summarizes the temporal behavior of all runs. For each
current instance of a procedure, this context can be summarized by
distributions and deviations of time. While aggregated time devia-
tions are indicated by color in our approach, time distributions are
visualized with histograms and trend diagrams.

Color Coding: To make the temporal context graspable at a
quick glance, we encode it as an attribute of the nodes in the node-
link diagram. Color provides a simple, yet powerful means to im-
plement such an encoding of a single attribute. Individual devia-
tions from all runs, as discussed in Section 3.2, are represented by
the lateness or runtime deviations of the executed procedures. We
encode these two metrics in the color of the nodes. In the tool, the

early on time late

longernormalshorter

Starting time:

Runtime:

Figure 4: Color scale used for encoding the lateness and runtime
deviations of executed procedures (top); transformed to a gray scale,
a brightness gradient is revealed (bottom).

coloring scheme can be switched between the two metrics; a third
color coding shows status information as a categorical encoding.

For mapping the lateness (or runtime deviation) to color, we
tested several color scales. Requirements were that the scale is in-
tuitive to read, provides enough resolution to discern values, and
is still readable for people with common color vision deficiencies,
such as red-green color blindness. We finally decided to use a color
scale from blue to amber as illustrated in Figure 4, top:

• blue, attributed as a neutral and calm color, encodes proce-
dures executed earlier (shorter) than the median;

• green, attributed with balance and harmony, encodes proce-
dures started at (ran for) comparable time as the median;

• amber, usually used as a warning color, encodes procedures
run later (longer) than the median.

When transforming the color scale to a gray scale as shown in
Figure 4, bottom—thereby simulating what a fully color-blind user
sees—we observe a slight brightness gradient. This gradient does
not just warrant the color scale to be readable without seeing color,
but increases the perceivable resolution of the color scale as well.
We also tested other color vision deficiencies using the Coblis color
blindness simulator and confirmed the suitability of the color scale.
The color scale can be considered as a mix of a sequential scale (se-
quential luminance gradient) and a diverging scale (diverging hue
using three base colors).

Like Figure 2 shows for lateness values, it is easy to spot late
procedures using this color scale. Color also visually groups pro-
cedures, because elements of similar color are perceived as similar
according to Gestalt laws [34]. This implicit grouping is also mo-
tivated from a domain perspective: procedures of similar lateness
are likely to be connected by implicit, undocumented dependen-
cies, which now become apparent due to color coding. Together
with the layout arranging nodes close that have a high name and
lateness similarity, clearly discernible strings of nodes are formed
that make hidden dependencies visible (e.g., Figure 2, top).

Histograms and Trend Charts: Providing a single color-coded
value for each stored procedure gives a good overview; however,
it does not show a complete picture of how the current execution
deviates from other runs. In addition to just comparing the cur-
rent execution to median values, seeing the distribution of lateness
values and runtime or the evolution of those variables would cer-
tainly provide extra value. Yet, integrating this information into the
graph view is difficult and would overload the diagram. Hence, we
added this information to an extra view, which can be displayed on
demand. It shows the detailed information summarizing all other
instances V (sp(v)) of a selected procedure v.

In this view, we discern the four different bar charts shown in
Figure 5. Histograms aggregate all executions into bins to show the
distribution of the start times (Figure 5, a) and of runtime values
(Figure 5, b). In both diagrams, the bar highlighted in a different
color represents the bin that contains the current execution. The two
trend charts use a timeline as vertical axis to show the evolution of



(a) start time histogram (b) runtime histogram

(c) lateness trend (d) runtime trend

Figure 5: Histograms and trend charts relate a selected executed
procedure to all instances of the procedure based on start time, run-
time, and lateness; like in Figure 2, procedure DWT1010P executed
on August 1, 2013 is selected.

lateness values (Figure 5, c) and runtime values (Figure 5, d). A
small arrow on the timeline marks the current execution. We ap-
plied the same coloring scheme as for coloring the nodes represent-
ing the executed procedures (cf. Section 4.2)

4.3 Interactive Interface

The tool embeds the described visualization approach into an in-
teractive interface. In a navigation pane (Figure 2, top left), users
select the time frame and types of stored procedures (i.e., daily,
weekly, monthly, etc.). The side panel on the left further provides
options to switch the color scale and to filter the stored procedures.
Standard panning and zooming interactions are implemented for
the main view. It is possible to select chains (i.e., paths) starting
and ending in a particular execution; all elements are faded out in
this case, except those that are connected transitively to the selected
procedure. Details for individual stored procedures are retrievable
on demand. The histograms and trend charts are part of those de-
tails, but a textual pane provides more details, such as name, status,
type, and the precise start and end time of the executed procedure
(Figure 2, top right). Finally, a log of events as written out by the
database server is provided. The log contains important informa-
tion such as statistics on the processed data or error messages. The
log view shows just the events related to an individual executed
procedure or also the context of the full sequence of events.

Loading a typical 24h interval of the described dataset takes 7–8s
on a consumer PC (Intel i7-3517U, 4GB RAM, SSD, Windows 7,
Chrome 47, Oracle XE 11g). The force-directed algorithm takes
about another 5–7s to produce a stable layout. After that, interac-
tions like pan, zoom, and select run smoothly without notable lags.

4.4 Example
To give an example of an analysis, we point out some observations
in Figure 2 and Figure 5. The visualizations show data from the
nightly batch run of August 1, 2013. As can be observed in the
node-link view of Figure 2, a cluster of densely connected proce-
dures forms in the middle. Like expected due to data loading pro-
cesses, fan patterns are detected and aggregated mainly in the first
third of the timeline. One fan-like pattern is not collapsed—it does
not form a pure fan because it has one predecessor also connected
to other nodes. A set of procedures that are likely to be connected
by undocumented dependencies produces a long sequence of blue
boxes in the top part of the view.

Previously, around middle of July, a major server update was
installed, significantly increasing the server performance. As an
expected consequence, blue colors dominate the graph view, indi-
cating that the executed procedures ran earlier than the median case.
Selecting one of the executed procedures that consumed reasonable
runtime, like DWT1010P in Figure 2, we see the sudden drop of
runtime in the chart in the right side panel. The lateness trend for
the same selected executed procedure in Figure 5 (c) confirms an
earlier execution after the upgrade; the improvement here, how-
ever, is much smaller than with respect to runtime. We also observe
occasional delays before the upgrade that vanished after. The his-
tograms in Figure 5 (a) and (b) further reveal that the start time of
the selected procedure is early (within a very skewed distribution)
and that the runtime is shorter than usual, but it had already been
much shorter for other runs. Going back to Figure 2, we also find
that the upgrade did not bring a major advantage in all areas: many
green and even some nearly amber nodes indicate procedures that
ran as late or even later than the median. The upgrade, hence, only
had partial success.

5 QUALITATIVE EVALUATION

We conducted an expert study to evaluate the usefulness of our ap-
proach. The study took place in a meeting room at the wholesale
company we collaborated with (cf. Section 3.1). Seven database
experts participated in the study and independently solved realis-
tic analysis and debugging tasks. They had each worked for 5 to
20 years with database systems and are responsible for the devel-
opment, maintenance, and customization of the stored procedures
infrastructure in the company. In particular, they are in charge of
changing and configuring the stored procedures, tables, and depen-
dencies, and resolving issues that occur during execution.

5.1 Procedure
The tool was installed on a laptop and shown on a 24” monitor
with a resolution of 1920x1080 pixels. It was executed in a web
browser (Chrome) and connected to the database of the company
to access the latest data. This included the latest log files of the
stored procedures that were loaded into the tool right before the
study started. The tool was started with an initial time period for
the visualization, comprising a nightly run from 8 p.m. to 8 a.m. of
the next day. While comments concerning the usability of the tool
were appreciated, we asked the expert users to focus their feedback
on the general visualization approach.

The expert users took part one at a time. The study started with
an introduction into the visualization approach, followed by an ex-
planation of the graphical user interface and interactive features of
the tool. The participants could then make themselves familiar in a
free exploration phase, and ask any questions required to fully un-
derstand the visualization approach and its implementation. Subse-
quently, they had to solve three tasks with the tool:

1. Which procedure was running the second-longest on day X?

2. When was the last successor of procedure Y completed in the
batch run of day X?



3. What was the reason why procedure Y did not end as usual at
9 a.m. on day X?

(with each X being a given day in the past and each Y being the
name of a stored procedure, such as DWT1030P).

The three tasks are common examples of what the expert users
have to deal with in their daily routine. Stored procedures with
a long runtime are often a candidate for improvement, which is
also the case for overly long chains of stored procedures. In par-
ticular, Task 1 is an example of checking the most critical proce-
dures, which could indicate a general performance issues (debug-
ging scenario) or a problem of an individual execution (monitoring
scenario). Task 2 checks if participants could follow dependencies
with the help of the visualization; in practical monitoring applica-
tion, this kind of task answers whether the processing of a specific
dataset (identified by an initial loading procedure) has already ter-
minated. Task 3 is very common as part of an error analysis in
stored procedures. Although timing did allow us to investigate only
a very limited set of tasks, our selection covers a variety of realistic
scenarios including both monitoring and debugging.

After the completion of each task, the participants had to answer
the following evaluation questions:

1. Is the visualization approach helpful in solving the task?

2. Is it easier or harder than before to solve the task? Why?

3. What functionality is missing to properly solve the task?

With these questions, we wanted to examine whether the visual-
ization approach is an improvement over existing solutions. How-
ever, participants were allowed to also use their common work en-
vironment in the study consisting of tools such as Quest Toad for
Oracle, Oracle SQL Developer, Token 2, and FileZilla.

After completing the three given tasks, the expert users were
asked to choose a fourth task by themselves that they would like
to solve with the tool. Lastly, they had to answer four final ques-
tions that evaluate the general applicability as well as benefits and
limitations of the approach:

1. For what kind of tasks could the approach be useful?

2. Which expectations were not met by the approach?

3. What worked well, what could be improved?

4. Is the visualization of the daily batch run useful?

While the study targets at a realistic setting involving the actual
maintainers of a database system, the resulting study design also
comes along with some limitations: First, the number of partic-
ipants is low and does not allow a quantitative evaluation of the
results. Second, different biases might have influenced the results:
first, the developers were very accustomed to a specific set of tools
they had used every day over years and might be reluctant to use
any new tools and change their workflow. Second, the participants
had known and worked together with one author of this paper be-
fore, which could have affected their objectivity. Third, the limited
time the participants could invest for the study restricted the num-
ber, complexity, and realism of tasks we could test.

5.2 Results
Overall, the visualization approach received very positive feedback.
Six of the seven participants considered the visualization helpful in
solving the tasks. All but one stated that the tasks were generally
easier to solve with the visualization than they would be without.
This result was strongest for the second task where all seven users
agreed that the visualization helped a lot, while most considered it
very useful for Task 3 and quite useful for Task 1.

Task Completion: The lower rating for Task 1 is little surpris-
ing, as it is difficult to precisely compare the length of bars that are

not aligned, i.e., have varying start and end points [31]. For that
reason, the expert users could have solved Task 1 more efficiently
with a simple SQL statement than with the visualization. How-
ever, the visualization provides context information, such as the de-
pendencies between stored procedures, which could be useful for
follow-up tasks. Some expert users therefore proposed to extend
the visualization by further filters that allow to show, for instance,
only the x longest procedures.

The experts agreed that Task 2 was well supported by the visu-
alization of the stored procedure chain. They could easily spot and
follow the chains in the visualization, which was further facilitated
through interactively highlighting selected chains by fading out the
rest. Some participants noted that chains can split and run in par-
allel, which could make it hard to determine which procedure ends
last. Although the vertical grid lines in the background support the
visual comparison, the study participants were sometimes not sure
and looked up the exact end times in the details view.

Task 3 required to identify a large delay between two consec-
utive procedures, which was not a problem for any of the study
participants. They stressed the fact that the visualization facilitates
this kind of tasks, as delays in chains are clearly indicated by overly
long edges. Some users concluded from the log that an external sys-
tem might be the reason for the delay. However, all users stated that
they would require additional information to verify these and other
assumptions, and some proposed to include further data sources in
the visualization, especially dependencies to external systems.

Free Exploration and Discussion: During the free exploration,
the expert users tended to analyze procedures in the center of the
visualization as well as those developed by themselves. The latter
were merely used to check whether the visualization is correct and
displays the procedure and dependencies as expected. Likewise,
most participants chose a debugging case as fourth task, in which
they either focused on a single procedure and its dependencies or
on the complete graph structure of the batch run. For instance, one
user analyzed the batch run of the day when the study took place,
and found that, against expectations, some procedures have not yet
been started. However, he also noted that it is difficult to say for
sure which procedures should have been started, as only a part of
the dependencies are explicitly documented.

Most participants stated that they would use the tool to analyze
the structure of the stored procedure system and see where it could
be improved. While error analysis was mentioned as a possible
application area, the expert users stressed the limitations of the ap-
proach with regard to finding the reasons for errors. Two partici-
pants mentioned that they could imagine using the visualization to
document stored procedures and adapt the schedule. All users but
one liked the overview of the batch run that is provided by the vi-
sualization. Some criticized the visual clutter in the overview, but
added that it gets less problematic as soon as one analyzes the visu-
alization in more detail using the zoom and other interactions.

The experts reported several features useful for a more compre-
hensive analysis. Repeatedly mentioned was the inclusion of alter-
native views on the stored procedures, especially a sortable table
listing different attributes of the stored procedures, such as runtime
or lateness. Related to this, features were proposed to filter the
stored procedure visualization based on such attributes. The expert
users noted that some of these filters may already be applied before
the data is loaded into the visualization tool to reduce the amount of
data that needs to be transferred between server and client. Finally,
comments concerned the inclusion of further data sources, such as
dependencies to external systems or additional log files.

6 CONCLUSIONS

We have introduced an approach for the visual monitoring of pro-
cess runs that supports a number of maintenance tasks by visual
comparison of a specific process run to other runs of the same pro-



cess. We have demonstrated the usefulness of the approach by ap-
plying it to a large database containing log data recorded over a
time period of more than thirteen years. Scalability is achieved by
restricting the analysis to a certain time frame and providing various
options for filtering and interaction. We adapted the force-directed
layout in a way that it results in a less cluttered node-link diagram.

The feedback of the expert users was very positive and confirms
the usefulness of the approach. Despite some observed visual clut-
ter, the overview visualization was considered valuable to get a bet-
ter impression of the actual schedule and dependencies of the stored
procedures as well as the temporal deviations. Furthermore, the
analysis of chains of stored procedures was highly supported by the
visualization according to the expert users. This includes the dis-
covery of errors and unexpected system behavior, such as the iden-
tification and analysis of procedures that run delayed or crashed.

As part of future work, we want to generalize the approach to re-
lated applications, for instance, executions of general software sys-
tems, loading behavior of web pages, or executed instances of busi-
ness and production processes. Further, we are interested to extend
the approach towards comparing specific instances of runs, catego-
rizing runs, and detecting outliers within the set of runs. Also, the
force-directed algorithm could be further optimized, for instance,
by increasing the compactness of the representation.

REFERENCES

[1] A. Abuthawabeh, F. Beck, D. Zeckzer, and S. Diehl. Finding struc-
tures in multi-type code couplings with node-link and matrix visu-
alizations. In Proceedings of the 1st IEEE Working Conference on
Software Visualization (VISSOFT ’13), pages 1–10. IEEE, 2013.

[2] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization
of time-oriented data. Springer, 2011.

[3] W. Aigner, S. Miksch, B. Thurnher, and S. Biffl. PlanningLines: novel
glyphs for representing temporal uncertainties and their evaluation.
In Proceedings of the 9th International Conference on Information
Visualisation (InfoVis ’05), pages 457–463. IEEE, 2005.

[4] K. Andrews, M. Wohlfahrt, and G. Wurzinger. Visual graph compari-
son. In Proceedings of the 13th Conference on Information Visualisa-
tion (IV ’09), pages 62–67. IEEE, 2009.

[5] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey
of dynamic graph visualization. Computer Graphics Forum, 2016, to
appear.

[6] F. Beck, M. Burch, C. Vehlow, S. Diehl, and D. Weiskopf. Rapid serial
visual presentation in dynamic graph visualization. In Proceedings of
the 2012 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’12), pages 185–192. IEEE, 2012.

[7] F. Beck, F.-J. Wiszniewsky, M. Burch, S. Diehl, and D. Weiskopf.
Asymmetric visual hierarchy comparison with nested icicle plots. In
Joint Proceedings of the 4th International Workshop on Euler Dia-
grams and the 1st International Workshop on Graph Visualization in
Practice (GraphVIP ’14), volume 1244 of CEUR-WS, pages 53–62,
2014.

[8] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language
User Guide. Addison-Wesley Professional, 2nd edition, 2005.

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 2011.

[10] W. Clark, W. N. Polakov, and F. W. Trabold. The Gantt Chart: A
working tool of management. Ronald Press Company, 1922.

[11] W. De Pauw and S. Heisig. Visual and algorithmic tooling for system
trace analysis: a case study. ACM SIGOPS Operating Systems Review,
44(1):97–102, 2010.

[12] W. De Pauw and S. Heisig. Zinsight: A visual and analytic environ-
ment for exploring large event traces. In Proceedings of the 5th In-
ternational Symposium on Software Visualization (SoftVis ’10), pages
143–152. ACM, 2010.

[13] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and
J. Yang. Visualizing the execution of Java programs. In Software
Visualization, volume 2269 of LNCS, pages 151–162. Springer, 2002.

[14] W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J. F. Morar.
Web Services Navigator: visualizing the execution of web services.
IBM Systems Journal, 44(4):821–845, 2005.

[15] W. De Pauw, J. L. Wolf, and A. Balmin. Visualizing jobs with shared
resources in distributed environments. In Proceedings of the 1st IEEE
Working Conference on Software Visualization (VISSOFT ’13), pages
1–10. IEEE, 2013.

[16] C. Dunne and B. Shneiderman. Motif simplification: improving net-
work visualization readability with fan, connector, and clique glyphs.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’13), pages 3247–3256. ACM, 2013.

[17] A. Eisenberg. New standard for stored procedures in SQL. ACM
SIGMOD Record, 25(4):81–88, 1996.

[18] M. Freire, C. Plaisant, B. Shneiderman, and J. Golbeck. ManyNets:
An interface for multiple network analysis and visualization. In Pro-
ceedings of the 28th International Conference on Human Factors in
Computing Systems (CHI ’10), pages 213–222. ACM, 2010.

[19] H. L. Gantt. Work, Wages, and Profits. Engineering Magazine Com-
pany, 2 edition, 1913.

[20] P. Gestwicki and B. Jayaraman. Methodology and architecture of
JIVE. In Proceedings of the 2005 ACM Symposium on Software Visu-
alization (SoftVis ’05), pages 95–104. ACM, 2005.

[21] M. Ghoniem, J.-D. Fekete, and P. Castagliola. On the readability
of graphs using node-link and matrix-based representations: A con-
trolled experiment and statistical analysis. Information Visualization,
4(2):114–135, 2005.

[22] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Information
Visualization, 10(4):289–309, 2011.

[23] O. Greevy, M. Lanza, and C. Wysseier. Visualizing live software sys-
tems in 3D. In Proceedings of the 2006 ACM Symposium on Software
Visualization (SoftVis ’06), pages 47–56. ACM, 2006.

[24] D. Holten, B. Cornelissen, and J. J. Van Wijk. Trace visualization
using hierarchical edge bundles and massive sequence views. In Pro-
ceedings of the 4th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis (VISSOFT ’07), pages 47–54.
IEEE, 2007.

[25] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele,
M. Schulz, and B. Hamann. Combing the communication hairball: Vi-
sualizing large-scale parallel execution traces using logical time. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2349–
2358, 2014.

[26] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer. State of the art of performance visual-
ization. In EuroVis - STARs, pages 141–160. Eurographics Associa-
tion, 2014.

[27] J. Jo, J. Huh, J. Park, B. Kim, and J. Seo. LiveGantt: Interactively
visualizing a large manufacturing schedule. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2329–2338, 2014.

[28] R. Lutz and S. Diehl. Using visual dataflow programming for interac-
tive model comparison. In Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering (ASE ’14),
pages 653–664. ACM, 2014.

[29] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach.
VAMPIR: Visualization and analysis of MPI resources. Supercom-
puter, 12(1):69–80, 1996.

[30] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2431–2440, 2012.

[31] J. Talbot, V. Setlur, and A. Anand. Four experiments on the percep-
tion of bar charts. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2152–2160, 2014.

[32] M. Tory, S. Staub-French, D. Huang, Y.-L. Chang, C. Swindells, and
R. Pottinger. Comparative visualization of construction schedules. Au-
tomation in Construction, 29:68–82, 2013.

[33] J. Trümper, J. Döllner, and A. Telea. Multiscale visual comparison of
execution traces. In Proceedings of the 21st International Conference
on Program Comprehension (ICPC ’13), pages 53–62. IEEE, 2013.

[34] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt. II. Psy-
chologische Forschung, 4(1):301–350, 1923.


	Introduction
	Related Work
	Visualization Problem
	Application Background
	Terminology and Data Model
	Requirements

	Visualization Approach
	Graph Layout
	Temporal Context
	Interactive Interface
	Example

	Qualitative Evaluation
	Procedure
	Results

	Conclusions



